• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[duvida] metodo de laguerre

[duvida] metodo de laguerre

Mensagempor ftdk » Dom Set 23, 2012 10:17

Bom dia.

" Determine pelo metodo de Laguerre o intervalo que contenha todas as raizes reais da equacao {x}^{5}-2{x}^{3}+{x}^{2}-2=0 "

Exercicio relativamente simples, mas ao fazer a aproximacao da raiz, me deparei com nosso amigo zero. Minha duvida é se, nesse caso, eu devo coloca-lo em uma classificacao de positivo ou negativo apenas para terminar a resolucao, e lembrando que eu ainda nao conheço numeros complexos, mas o enunciado pediu apenas as raizes reais.

Até este momento, o resultado bate com o gabarito, pois o intervalo é ]-2;2[. Mas, se fosse necessário, como eu deveria proceder nessa situação ?

Imagem

ps: tentei postar sem utilizar imagens externas, mas nao consegui inserir tabelas aqui. Existe algum tutorial para insercao de tabelas?
ftdk
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Set 23, 2012 09:31
Localização: Sao Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: eletrônica
Andamento: cursando

Re: [duvida] metodo de laguerre

Mensagempor MarceloFantini » Dom Set 23, 2012 13:34

Não entendo o que quer dizer exatamente, pois zero não é uma raíz deste polinômio. O que acontece é que o valor da função é negativo neste ponto. Marque apenas como raíz, não precisa classificá-lo como positivo ou negativo (mesmo porque ele é neutro).

Você poderia usar LaTeX para inserir a tabela.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [duvida] metodo de laguerre

Mensagempor ftdk » Dom Set 23, 2012 15:05

Marcelo, obrigado pela resposta e desculpe se nao fui bem claro.

De acordo com o metodo de Laguerre, ao substituirmos os valores do intervalo ]-2;2[ na função, sempre que o resultado alternar entre + e -, significa que existe uma raiz real entre esses valores, correto? Por exemplo, existe 1 raiz real no intervalo ]1;2[

A minha duvida é quando substituo -1 na funcao. O resultado de f[-1] = 0, entao nao sei se em f[-1] eu considero positivo (acarretando em 1 raiz real entre ]-2;-1[, e 1 raiz real entre ]-1;0[ ) ou negativo (nao haveria nenhuma raiz real nesses intervalos).
ftdk
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Set 23, 2012 09:31
Localização: Sao Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: eletrônica
Andamento: cursando

Re: [duvida] metodo de laguerre

Mensagempor MarceloFantini » Dom Set 23, 2012 15:39

Você está confundindo conceitos. A definição de raíz de uma função é justamente que f( \alpha) =0. Quando você substitui -1 na função você vê que f(-1)=0, logo -1 é raíz da função. Isto significa que qualquer intervalo contendo -1 fará com que a função assuma valores positivos e negativos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [duvida] metodo de laguerre

Mensagempor ftdk » Dom Set 23, 2012 18:24

Ah, então acho que tambem entendi porque não incluimos os extremos no intervalo ]-2;2[.

Agora, só por curiosidade, vou tentar calcular a menor e a maior raiz desse polinomio. Obrigado pela ajuda.
ftdk
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Set 23, 2012 09:31
Localização: Sao Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: eletrônica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.