por manuel_pato1 » Sex Set 21, 2012 19:54
Encontrar as equações gerais dos planos.
r1: x=-2+t / y= -t / z=-3
r2: y=-x-1 / z=3
o v1= (1,-1,0) e o v2=( -1,1,0) , correto?
Eles são paralelos, só que com sentidos contrários.
No meu pensaento, precisaria eu achar um vetor ortogonal a estas retas. Beleza! Um vetor que satisfaz isso é ( 0,0,1).
Pois bem, fazendo na fórmula geral , ficaria:

: 0(x+2) + 0(y-0) + 1(z-3)=0

: z -3= 0

: z= 3
-----------
Porém no gabarito do livro, a resposta correta é: 6x+6y-z+9=0
-
manuel_pato1
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Ter Set 18, 2012 22:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por young_jedi » Sex Set 21, 2012 21:05
repare que se as retas possuem o mesmo vetor diretor então qualquer vetor ortogonal a uma delas sera ortogonal a outra
por isso não da para achar um vetor ortogonal ao plano fazendo o produto vetorial das duas
encontre um ponto P que pertença a reta r1 e um ponto Q que pertença a r2 então clacule o vetor PQ, o produto vetorial PQxV1 vai resultar em um vetor N ortogonal ao plano
então para um dado ponto X=(x,y,z) o vetor XP ou XQ vai ser ortogonal ao vetor N
como o produto escalar entre dois vetores ortogonais é igual a zero então voce tera a equação do plano
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por manuel_pato1 » Sáb Set 22, 2012 11:49
Deu certinho, usei o ponto P (-2,0,-3) e o Q (-1,0,3) , sendo PQ= (1,0,6)
Depois de fazer o produto vetorial com o vetor v(1,-1,0) , me resultou num vetor n(6,6,-1)
6(x+2) + 6(y-0) - 1(z+3) = 0
6x+6y-z+9=0
-
manuel_pato1
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Ter Set 18, 2012 22:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por manuel_pato1 » Sáb Set 22, 2012 11:50
young_jedi , brigadão cara. Fazia um tempão que eu tentava fazer esse exercícios, mas nunca conseguia, pois fazia sempre com aqueles vetores que, em módul, são iguais. Abraço
-
manuel_pato1
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Ter Set 18, 2012 22:18
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação geral do plano
por lucash96 » Seg Nov 02, 2015 16:51
- 0 Respostas
- 1216 Exibições
- Última mensagem por lucash96

Seg Nov 02, 2015 16:51
Geometria Analítica
-
- Encontrar a Equação Geral do Plano
por Vitor2+ » Seg Nov 14, 2011 02:21
- 7 Respostas
- 10358 Exibições
- Última mensagem por LuizAquino

Qua Nov 16, 2011 15:04
Geometria Analítica
-
- Vértices do tetraedro e equação geral do plano
por -civil- » Qua Jun 15, 2011 23:04
- 1 Respostas
- 3912 Exibições
- Última mensagem por LuizAquino

Qui Jun 16, 2011 17:57
Geometria Analítica
-
- [Equação Plano] Transformar de geral pra paramétrica
por luankaique » Ter Ago 06, 2013 18:08
- 1 Respostas
- 4061 Exibições
- Última mensagem por Russman

Qua Ago 07, 2013 09:35
Geometria Analítica
-
- Equação geral do plano usando duas retas
por iarapassos » Sáb Set 01, 2012 19:12
- 2 Respostas
- 8650 Exibições
- Última mensagem por iarapassos

Dom Set 02, 2012 22:15
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.