• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada - Problema [2]

Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 21:07

Qual o custo mínimo de produção em uma indústria cuja função é definida por receita f(R)=100x^2-800x+5000

a)3000
b)3200
c)3400
d)3600
e)N.D.A

Ajuda nesse problema?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema [2]

Mensagempor MarceloFantini » Dom Set 16, 2012 21:41

Primeiro, sua função receita está errada, a notação correta deveria ser R(x) = 100x^2 -800x+5000. Se escrever f(R), onde f é uma função[/tex], então ela é uma função de R, e não o x que denota custo.

Para encontrar o mínimo, pegue a expressão, derive e iguale a zero, encontrando os pontos que satisfazem isso. Encontrando-o, substitua na função original e terá o valor que precisa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 21:55

MarceloFantini escreveu:Primeiro, sua função receita está errada, a notação correta deveria ser R(x) = 100x^2 -800x+5000. Se escrever f(R), onde f é uma função[/tex], então ela é uma função de R, e não o x que denota custo.

Para encontrar o mínimo, pegue a expressão, derive e iguale a zero, encontrando os pontos que satisfazem isso. Encontrando-o, substitua na função original e terá o valor que precisa.


Ficaria assim? :

200x-800=0
200x=800
x=\frac{800}{200}
x=400
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema [2]

Mensagempor MarceloFantini » Dom Set 16, 2012 21:58

Corret, exceto pelo fato que \frac{800}{200} é 4. Agora substitua isso na função original, ou seja, calcule R(4).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 22:05

MarceloFantini escreveu:Corret, exceto pelo fato que \frac{800}{200} é 4. Agora substitua isso na função original, ou seja, calcule R(4).



Confere se está certo, por gentileza ? Obrigadão amigo!
100(4)^2-800(4)+5000
6600
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema [2]

Mensagempor MarceloFantini » Dom Set 16, 2012 22:09

Está errado. Note que 100 \cdot 4^2 -800 \cdot 4 +5000 = 1600-3200 +5000 = -1600+5000 = 3400.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 22:15

MarceloFantini escreveu:Está errado. Note que 100 \cdot 4^2 -800 \cdot 4 +5000 = 1600-3200 +5000 = -1600+5000 = 3400.



Beleza, valeu. Errei por falta de atenção.
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)