• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada - Problema [2]

Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 21:07

Qual o custo mínimo de produção em uma indústria cuja função é definida por receita f(R)=100x^2-800x+5000

a)3000
b)3200
c)3400
d)3600
e)N.D.A

Ajuda nesse problema?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema [2]

Mensagempor MarceloFantini » Dom Set 16, 2012 21:41

Primeiro, sua função receita está errada, a notação correta deveria ser R(x) = 100x^2 -800x+5000. Se escrever f(R), onde f é uma função[/tex], então ela é uma função de R, e não o x que denota custo.

Para encontrar o mínimo, pegue a expressão, derive e iguale a zero, encontrando os pontos que satisfazem isso. Encontrando-o, substitua na função original e terá o valor que precisa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 21:55

MarceloFantini escreveu:Primeiro, sua função receita está errada, a notação correta deveria ser R(x) = 100x^2 -800x+5000. Se escrever f(R), onde f é uma função[/tex], então ela é uma função de R, e não o x que denota custo.

Para encontrar o mínimo, pegue a expressão, derive e iguale a zero, encontrando os pontos que satisfazem isso. Encontrando-o, substitua na função original e terá o valor que precisa.


Ficaria assim? :

200x-800=0
200x=800
x=\frac{800}{200}
x=400
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema [2]

Mensagempor MarceloFantini » Dom Set 16, 2012 21:58

Corret, exceto pelo fato que \frac{800}{200} é 4. Agora substitua isso na função original, ou seja, calcule R(4).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 22:05

MarceloFantini escreveu:Corret, exceto pelo fato que \frac{800}{200} é 4. Agora substitua isso na função original, ou seja, calcule R(4).



Confere se está certo, por gentileza ? Obrigadão amigo!
100(4)^2-800(4)+5000
6600
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Derivada - Problema [2]

Mensagempor MarceloFantini » Dom Set 16, 2012 22:09

Está errado. Note que 100 \cdot 4^2 -800 \cdot 4 +5000 = 1600-3200 +5000 = -1600+5000 = 3400.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Derivada - Problema [2]

Mensagempor iceman » Dom Set 16, 2012 22:15

MarceloFantini escreveu:Está errado. Note que 100 \cdot 4^2 -800 \cdot 4 +5000 = 1600-3200 +5000 = -1600+5000 = 3400.



Beleza, valeu. Errei por falta de atenção.
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.