• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limite]limite com raiz

[limite]limite com raiz

Mensagempor will94 » Sáb Set 15, 2012 00:02

Preciso resolver o seguinte limite, só que sem L'Hôpital porque na prova o professor falou que vai cair uma questão aberta parecida ou mais difícil na prova não podendo derivar, e preciso treinar o máximo de maneiras possíveis de resolver.
Acredito que tenha que fatorar a função, só que não obtive o resultado que é 2/3.

\lim_{x \rightarrow 1}\frac{\sqrt[3]{x}-1}{\sqrt[2]{x}-1}

Obrigado desde já :-D
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [limite]limite com raiz

Mensagempor MarceloFantini » Sáb Set 15, 2012 07:53

Seria interessante se pudéssemos retirar as raízes. Vamos tentar tomar x=t^3. Tiramos a raíz do numerador mas continuamos com \sqrt{t^3} no denominador. Se tentarmos x=t^2 também teremos o mesmo problema. Agora, o que poderíamos usar para cancelar ambos 2 e 3? O produto deles! Se x=t^6, então teremos

\lim_{x \to 1} \frac{\sqrt[3]{x} -1}{\sqrt{x} -1} = \lim_{t \to 1} \frac{t^2-1}{t^3-1}.

Daqui você já deve saber resolver.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [limite]limite com raiz

Mensagempor will94 » Sáb Set 15, 2012 17:48

Muito obrigado :-D
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.