• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Fração

Fração

Mensagempor ana celia » Ter Set 11, 2012 10:27

1-Em uma loja, o metro de corda é vendido por R$ 3,00 , e o rolo com 60 metros de corda,por R$ 150,00.Três amigos compraram juntos um rolo de corda,ficando o primeiro com 1/4 do rolo , o segundo com 1/12 e o terceiro com o restante. Se a divisão dos gastos foi proporcional à quantidade de corda que cada um recebeu , aquele que comprou a maior quantidade de corda economizou, em relação à compra da mesma quantidade de corda por metro, o total de:
resposta R$ 20,00.

1- O primeiro 1/4 -4/4 = 3/4
2- o segundo 1/12-3/4= 8/12
3-o terceiro ?restante??
Meu raciocinio está coerente? mas não consigo continuar....
Ana Célia
ana celia
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 11, 2012 10:08
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Fração

Mensagempor young_jedi » Ter Set 11, 2012 11:23

primerio voce deve calcular que fração o terceiro amigo ficou, isto é dado pela soma total menos a fração dos dois outros amigos ou seja:

x&=&1-(\frac{1}{4}+\frac{1}{12})

Depois voce tem que calcular quanto ele recebeu de corda e quanto ele gastou gastou

G&=&150*x

C&=&60*x

Depois vc calcula quanto ele gastaria se comprasse essa mesma quantidade por metro (sendo 3 reais o metro) e subtraindo os gasto vc encontra o valor economizado
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Fração

Mensagempor Cleyson007 » Ter Set 11, 2012 12:10

Bom dia Ana!

Primeira, seja bem-vinda ao AjudaMatemática!

Sejam, " x, y e z " os compradores.

Para "x", temos: --> 1/4 (60) = 15m
Para "y", temos: --> 1/12 (60) = 5m
Para "z", temos: --> 40m (Restante para fechar os 60m) --> Pagou por metro de corda: 150/60 = R$2,50

Análise do gasto de "z" --> 2,50(40) = R$100,00
Se "z" tivesse comprado separado, teríamos: 3(40) = R$ 120,00

Logo, "z" economizou: R$ 120,00 - R$ 100,00 = R$ 20,00

Comente qualquer dúvida :y:

Abraço,

Cleyson007
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Fração

Mensagempor ana celia » Ter Set 11, 2012 12:29

Obrigada pela ajuda, vou prestar o concurso de escrevente e preciso da ajuda de vcs!!!!!!
bj
ana celia
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Set 11, 2012 10:08
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando


Voltar para Inequações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?