• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[diferenciais] diferença de significados

[diferenciais] diferença de significados

Mensagempor Jhenrique » Seg Set 10, 2012 00:03

Saudações Pessoal!

Corrigam-me se eu estiver errado...
na definição de DERIVADA, as seguintes afirmações são válidas:

?x=dx : ?x
?y=dy : f(x+?x)-f(x)


mas em APROXIMAÇÃO DIFERENCIAL, as seguintes afirmações são válidas:

?x=dx : ?x
?y : f(x+?x)-f(x)
dy : t(x+?x)-t(x)


sendo:
f: função
t: reta tangente

Certo ou não?

Obg,

José
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: [diferenciais] diferença de significados

Mensagempor MarceloFantini » Seg Set 10, 2012 00:13

Henrique, não consigo entender o que você quer dizer. Poderia elaborar mais?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [diferenciais] diferença de significados

Mensagempor Jhenrique » Qui Set 13, 2012 03:26

Claro! Então... minha dúvida surgiu quando eu assisti a video aula 17 do Luiz Aquino, "Aproximação Linear e Diferencial". Nela, como na anterior ("Derivada de Ordem Superior"), ele manipula os diferenciais x e y normalmente, como se fossem variáveis quaisquer, e eu achei isso muitíssimo estranho, porque na video aula 13 dele, Regra da Cadeia, ele enfatiza claramente que não podemos simplificar um diferencial de um denominador com um diferencial do numerador seguinte. Mas como eu disse, em aulas futuras, ele os manipula normalmente, e isso eu não entendi muito bem... outra coisa também que não ficou muito claro é pq no exemplo 2 da video aula 17, o valor do dy é diferente do valor do ?y. Ele derivou a expressão do exemplo e calculou o valor de dy usando os mesmos dados do problema usados para calcular o valor de ?y, os valores são diferentes, não entendi porque... o que eu cheguei mais próximo de entender foi uma parte da resposta particular dele para mim que eu postei abrindo este tópico.

O Luiz me afirmou que o dy é da reta tangente "r", enquanto que o ?y é duma função qualquer "f"... rapidamente eu pensei que na aproximação diferencial, o dy pode ser diferente de ?y por essa razão, mas na definição de derivada imaginei que dy e ?y são idênticos.
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: [diferenciais] diferença de significados

Mensagempor LuizAquino » Qui Set 13, 2012 17:58

Jhenrique escreveu:Claro! Então... minha dúvida surgiu quando eu assisti a video aula 17 do Luiz Aquino, "Aproximação Linear e Diferencial". Nela, como na anterior ("Derivada de Ordem Superior"), ele manipula os diferenciais x e y normalmente, como se fossem variáveis quaisquer, e eu achei isso muitíssimo estranho, porque na video aula 13 dele, Regra da Cadeia, ele enfatiza claramente que não podemos simplificar um diferencial de um denominador com um diferencial do numerador seguinte. Mas como eu disse, em aulas futuras, ele os manipula normalmente, e isso eu não entendi muito bem... outra coisa também que não ficou muito claro é pq no exemplo 2 da video aula 17, o valor do dy é diferente do valor do ?y. Ele derivou a expressão do exemplo e calculou o valor de dy usando os mesmos dados do problema usados para calcular o valor de ?y, os valores são diferentes, não entendi porque... o que eu cheguei mais próximo de entender foi uma parte da resposta particular dele para mim que eu postei abrindo este tópico.

O Luiz me afirmou que o dy é da reta tangente "r", enquanto que o ?y é duma função qualquer "f"... rapidamente eu pensei que na aproximação diferencial, o dy pode ser diferente de ?y por essa razão, mas na definição de derivada imaginei que dy e ?y são idênticos.


Para que os outros participantes do fórum saibam de que aulas você está falando, você se refere as videoaulas do curso de Cálculo I que estão disponíveis no meu canal:

http://www.youtube.com/LCMAquino

Em relação a sua dúvida, você está confundindo a notação de Leibniz "dy/dx", que serve para representar a derivada de uma função, com um quociente "dy/dx" que usamos em aproximação diferencial. Na notação de Leibniz, não estamos enxergando dy/dx como uma "mera" divisão entre os números dy e dx. Na verdade, dy/dx representa um limite nessa notação. Já na aproximação diferencial queremos dar um significado para a divisão entre os números dy e dx. Ou seja, um significado para dy/dx que não seja simplesmente uma notação. Considere então a figura abaixo.

figura.png
figura.png (10.9 KiB) Exibido 3388 vezes


Suponha que T seja a reta tangente a função f no ponto (x, f(x)). Façamos as seguintes definições:

(i) vamos chamar de \Delta x a variação da grandeza x. Por exemplo, se x variou de x_0 até x_1, então \Delta x = x_1 - x_0 . No nosso caso, como x variou de x até x + dx, teremos que \Delta x = dx;

(ii) vamos chamar de \Delta y a variação da grandeza y (lembrando que y é uma função de x) quando houve uma variação na grandeza x. Por exemplo, se x variou de x_0 até x_1, então \Delta y = f(x_1) - f(x_0) . No nosso caso, como x variou de x até x + dx, teremos que \Delta y = f(x+dx) - f(x);

(iii) vamos chamar de dy a variação da grandeza T quando houve uma variação na grandeza x. Por exemplo, se x variou de x_0 até x_1, então dy = T(x_1) - T(x_0) . No nosso caso, como x variou de x até x + dx, teremos que dy = T(x+dx) - T(x).

Analisando essas definições, perceba que teremos \Delta y \neq dy . Mas note que dy servirá como uma aproximação para \Delta y .

Considere agora o ângulo alfa, formado pela reta tangente T e o eixo x. Da definição de derivada, sabemos que f^\prime(x) = \textrm{tg}\,\alpha . Mas por outro lado, analisando o triângulo retângulo que tem hipotenusa em T e catetos medindo dx e dy, temos que \textrm{tg}\,\alpha = \dfrac{dy}{dx} . Concluímos então nesse caso que f^\prime(x) = \dfrac{dy}{dx}. Aqui estamos enxergando "dy/dx" como um quociente entre os números dy e dx que definimos anteriormente. Não estamos enxergando "dy/dx" como uma "mera" notação para representar a derivada de uma função. Sendo assim, como "dy/dx" é um quociente nesse caso, podemos escrever dy = f'(x)dx. Isso nos fornece uma forma de calcular dy sendo dados f'(x) e dx.

Agora faça um exemplo. Considere a função f(x) = x^3. Suponha que x variou de 5 até 5,2, ou seja, dx = 0,2. Agora calcule \Delta y = f(5,2) - f(5) e dy = f^\prime(5)dx . Compare os valores de \Delta y e dy. Faça também um esboço do gráfico de f e interprete esses dois valores.

Observação

Com base em toda essa discussão, note como a notação de Leibniz é bem conveniente. A expressão "dy/dx" usada apenas como uma "mera" notação (uma "escrita"), também pode ter uma interpretação como um quociente entre os números dy e dx, desde que esses números sejam definidos de forma adequada.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [diferenciais] diferença de significados

Mensagempor Jhenrique » Qui Set 20, 2012 01:15

Já entendi o que eu não estava entendendo... eu estava pensando que a função derivada duma função quadrática era a equação da própria reta tangente... e não é. A função derivar é uma coisa e a reta tangente é outra... as duas usam delta y e x nas suas fórmulas mas são conceitos diferentes.

Obg,

José
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.