por Danilo » Qui Ago 30, 2012 12:08
Pessoal, estou com uma imensa dificuldade para localizar pontos no espaço. Por exemplo, como eu localizo o ponto (2,1,3) ? (Se este não é o local correto para perguntar isso... me corrijam por favor.). É muito diferente para localizar pontos no plano cartesiano... então estou fazendo bastante confusão. Grato desde já!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Qui Ago 30, 2012 12:24
Danilo escreveu:Pessoal, estou com uma imensa dificuldade para localizar pontos no espaço. Por exemplo, como eu localizo o ponto (2,1,3) ? (Se este não é o local correto para perguntar isso... me corrijam por favor.). É muito diferente para localizar pontos no plano cartesiano... então estou fazendo bastante confusão. Grato desde já!
Na videoaula
"04. Geometria Analítica - Vetores no Plano e no Espaço" eu falei sobre o Espaço Cartesiano e abordei o exemplo de esboçar exatamente esse ponto (2, 1, 3) nesse sistema. Seria interessante que você assistisse essa videoaula. Se sua dúvida persistir, então poste aqui que parte da explicação não ficou clara para você.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Qui Ago 30, 2012 12:27
LuizAquino escreveu:Danilo escreveu:Pessoal, estou com uma imensa dificuldade para localizar pontos no espaço. Por exemplo, como eu localizo o ponto (2,1,3) ? (Se este não é o local correto para perguntar isso... me corrijam por favor.). É muito diferente para localizar pontos no plano cartesiano... então estou fazendo bastante confusão. Grato desde já!
Na videoaula
"04. Geometria Analítica - Vetores no Plano e no Espaço" eu falei sobre o Espaço Cartesiano e abordei o exemplo de esboçar exatamente esse ponto (2, 1, 3) nesse sistema. Seria interessante que você assistisse essa videoaula. Se sua dúvida persistir, então poste aqui que parte da explicação não ficou clara para você.
Ok professor!

-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Pontos no espaço tridimensional
por Ronaldobb » Seg Dez 02, 2013 23:19
- 1 Respostas
- 1516 Exibições
- Última mensagem por e8group

Qua Dez 04, 2013 18:01
Geometria Analítica
-
- Localização de números racionais e irracionais na reta!
por LuizCarlos » Sex Mar 16, 2012 18:22
- 14 Respostas
- 18072 Exibições
- Última mensagem por Juvenal

Qua Mar 21, 2012 20:11
Álgebra Elementar
-
- [Pontos críticos - Derivadas] Ajuda com pontos críticos
por jonaskessinger » Qui Dez 13, 2012 18:16
- 1 Respostas
- 3592 Exibições
- Última mensagem por Russman

Qui Dez 13, 2012 19:35
Cálculo: Limites, Derivadas e Integrais
-
- Matriz em um sub-espaco!?
por tsigwt » Sex Ago 22, 2008 23:09
- 1 Respostas
- 2483 Exibições
- Última mensagem por admin

Sáb Ago 23, 2008 23:52
Álgebra Linear
-
- Espaço vetorial
por amr » Sex Abr 01, 2011 15:30
- 4 Respostas
- 8217 Exibições
- Última mensagem por Rosi7

Sáb Mai 30, 2015 00:16
Introdução à Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.