• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Matrizes] Dúvida conceitual

[Matrizes] Dúvida conceitual

Mensagempor souzalucasr » Qua Ago 22, 2012 14:26

Pessoal,

Estou com uma dúvida na seguinte questão conceitual*:

11. Suponha que \textbf{A}\neq0 e \texbf{AB=AC} onde \texbf{A}, \texbf{B}, \texbf{C} são matrizes tais que a multiplicação esteja definida.

a) \texbf{B}=\texbf{C}?

b) Se existir uma matriz \texbf{Y}, tal que \texbf{YA}=\texbf{I}, onde \texbf{I} é a matriz identidade, então \texbf{B}=\texbf{C}?


Bem, a resposta do item (a) é não, pois não necessariamente \texbf{B}=\texbf{C} quando \texbf{AB}=\texbf{AC}.

Minha dúvida está no item (b).

Entendo que se \texbf{YA=I}, então \texbf{Y=A^{-1}}, visto que uma matriz multiplicada por sua inversa é igual à matriz identidade. No entanto, eu não sei justificar como esse fato afetaria a proposição acima, ou seja, se o fato de que a matriz \texbf{A} tem uma inversa teria alguma influência na proposição de que \texbf{AB=AC}.

Alguém poderia me ajudar?

*Fonte: Álgebra Linear, 3a edição, pg. 12, Ed. Harbra, Boldrini et al
souzalucasr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Abr 05, 2012 11:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Economia
Andamento: cursando

Re: [Matrizes] Dúvida conceitual

Mensagempor MarceloFantini » Qua Ago 22, 2012 20:47

Uma matriz pode ter inversa à esquerda, daí teríamos que Y(AB) = Y(AC), e usando associatividade segue (YA)B = (YA)C. Usando o fato que YA = I, então (YA)B = IB = B e (YA)C= IC = C e portanto B=C.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Matrizes] Dúvida conceitual

Mensagempor souzalucasr » Qua Ago 29, 2012 11:44

MarceloFantini escreveu:Uma matriz pode ter inversa à esquerda, daí teríamos que Y(AB) = Y(AC), e usando associatividade segue (YA)B = (YA)C. Usando o fato que YA = I, então (YA)B = IB = B e (YA)C= IC = C e portanto B=C.


Obrigado pela resposta, Marcelo!

Eu poderia dizer então, a partir de sua resposta para o item (b) e da resposta que apresentei para o item (a), que sempre que uma matriz A é não-singular, então AB=AC implica em B=C?

Digo isso pois entendo que no caso exposto em (a), em que AB=AC, a matriz deve ser singular para que B\neq C seja verdadeiro. Estou correto em afirmar isso?
souzalucasr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Abr 05, 2012 11:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Economia
Andamento: cursando

Re: [Matrizes] Dúvida conceitual

Mensagempor MarceloFantini » Qua Ago 29, 2012 12:22

Uma matriz ser não-singular significa que ela tem inversa pela direita e pela esquerda, o que não precisa ser verdade. A resposta para o item (a) é claro que não necessariamente, tome A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} e C = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, então AB = AC = 0 mas B \neq C.

Note que ele não falou nada sobre serem matrizes quadradas, significa que não podemos falar em A ser singular ou não.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Matrizes] Dúvida conceitual

Mensagempor souzalucasr » Qua Ago 29, 2012 12:34

Perfeito, Marcelo. Muito obrigado, novamente!
souzalucasr
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qui Abr 05, 2012 11:21
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Economia
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59