• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Modular - Condição de contorno

Modular - Condição de contorno

Mensagempor Mariana Martin » Seg Ago 27, 2012 16:50

Bom dia pessoal, estou estudando inequação modular e apareceu a seguinte frase : " fazendo a intercecção com a condição de contorno". O que é condição de contorno?

Obrigada
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Modular - Condição de contorno

Mensagempor MarceloFantini » Seg Ago 27, 2012 18:43

Mariana, por favor atente à regra número 3 do fórum.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Modular - Condição de contorno

Mensagempor Mariana Martin » Ter Ago 28, 2012 11:52

Desculpe, segue abaixo o exercício:

Calcule {x}^{2}+x+1\leq\left|{x}^{2}+2x+3 \right|

Resolução;
A função {x}^{2}+2x+3 "dentro" do módulo tem as raízes -3 e 1.
Para x\geq1, temos:
{x}^{2}+x+1\leq{x}^{2}+2x-3 \Rightarrow x\geq4

Agora eu preciso fazer a interseção com a condição de contorno e gostaria de saber como eu faço e o que é interseção com a condição de contorno, porque:

Para x\leq-3

{x}^{2}+x+1\leq{x}^{2}+2x-3 \Rightarrow x\geq4

Eu também preciso fazer a interseção com a condição de contorno e segundo a resolução do exercício, nesse caso a solução é vazia.

Obrigada
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Modular - Condição de contorno

Mensagempor MarceloFantini » Ter Ago 28, 2012 13:43

Você está se perdendo em nomes. Note que a tal "condição de contorno" é a condição que você impôs para fazer suas considerações iniciais: tomou x \geq 1 e depois x \leq -3. O que você encontrar deve, primeiro, satisfazer isto.

No primeiro caso você encontrou que x \geq 4, significa que deve fazer a interseção \{ x \in \mathbb{R} \, | \, x \geq 1 \} com \{ x \in \mathbb{R} \, | \, x \geq 4 \}, simbolicamente \{ x \in \mathbb{R} \, | \, x \geq 1 \} \cap \{ x \in \mathbb{R} \, | \, x \geq 4 \} e isso dá \{ x \in \mathbb{R} \, | \, x \geq 4 \}, pois claramente qualquer número que seja maior que quatro será maior que um, mas nem todo número maior que um será maior que quatro.

No segundo caso você também encontrou que x \geq 4, mas a interseção \{ x \in \mathbb{R} \, | \, x \leq -3 \} \cap \{ x \in \mathbb{R} \, | \, x \geq 4 \} é vazia. Não existem números maiores que quatro e menores que -3.

Falta você considerar o caso em que -3 < x < 1, de onde segue que x^2 +x +1 \leq -x^2 -2x -3 e 2x^2 +3x +4 \leq 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Modular - Condição de contorno

Mensagempor Mariana Martin » Ter Ago 28, 2012 14:09

Obrigada pela explicação, ajudou bastante.
Mariana Martin
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Qui Jun 21, 2012 15:10
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)