• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Galera preciso de ajuda urgente mesmo

Galera preciso de ajuda urgente mesmo

Mensagempor Dankaerte » Qua Ago 26, 2009 16:49

Se o resto da divisão do pilonômio P(x)= 2x(x está elevado a n) + 5x - 30 por Q(x)= x - 2 é igual a 44, então n é igual a ?

galera preciso da fórmula para resolver isso e se alguém poder me mostrar também por ond eu começo para resolver serei muito grato.
Dankaerte
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Ago 26, 2009 16:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Galera preciso de ajuda urgente mesmo

Mensagempor Elcioschin » Qua Ago 26, 2009 18:12

Vou dar uma dica:

+ 2*x^5 + 0*x^4 + 0*x³ + 0*x² + 5x - 30 | x - 2
_________________________________|___________________________
- 2*x^5 + 4*x^4 ........................... | 2*x^4 + 4x³ + 8*x² + 16*x + 37
___________________
......... + 4*x^4 + 0*x³
......... - 4*x^4 + 8*x³
_________________________
.................. + 8*x³ + 0*x²
.................. - 8*x³ + 16*x²
_______________________________
.......................... + 16*x² + 5*x
.......................... - 16*x² + 32*x
___________________________________
................................... + 37*x - 30
................................... - 37*x + 74
___________________________________
........................................... + 44 <------ Resto


Solução ----> n = 5
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Galera preciso de ajuda urgente mesmo

Mensagempor Lucio Carvalho » Qua Ago 26, 2009 19:00

Olá Elcioschin,
Gostei muito da tua dica e apresento uma outra sugestão.

De acordo com o exercício, podemos aplicar o teorema do resto que diz: "O resto da divisão de um polinômio P(x) pelo binômio (x - a) é igual a P(a).".

Assim: P(x)=2.{x}^{n}+5.x-30

De acordo com o teorema do resto temos:P(2)=44

Logo:2.{2}^{n}+5.2-30=44
2.{2}^{n}=64
{2}^{n}=32
{2}^{n}={2}^{5}

E, finalmente: n=5

Adeus e até breve!
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Galera preciso de ajuda urgente mesmo

Mensagempor Elcioschin » Qua Ago 26, 2009 19:31

Lúcio

Perfeita a sua solução.
Eu só não a coloquei, imaginando que, com a dica, o nosso colega Dankaerte chegaria nela.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Galera preciso de ajuda urgente mesmo

Mensagempor Dankaerte » Qui Ago 27, 2009 14:07

muito obrigado pela resposta de vocês, mas achei a 1ª resposta muito complicada, mas gostaria de saber Lucio se esse teorema do resto pode se aplicar em qualquer polinômio.
Dankaerte
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Qua Ago 26, 2009 16:37
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Galera preciso de ajuda urgente mesmo

Mensagempor Elcioschin » Qui Ago 27, 2009 18:04

Dankaerte

1) O teorema do resto vale para qualquer polinômio (desde que seja dado o resto).

2) Quanto à primeira solução, ela não tem nada de complicado: É simplesmente o Método da Chave para divisão de polinômios, encontrado em qualquer livro ou apostila sobre o assunto.

Existem ainda outros métodos: Método de Descartes (ou dos Método dos Coeficientes a Determinar), o Teorema de D'Alembert, o Algoritmo de Briot-Ruffini e o Método de Divisão pelo Produto (x -a)*(x - b).

Sugiro a você estudar a Teoria sobre o assunto.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.