Gostaria muito de resolver o seguinte problema...
Dada a função abaixo
...
E interpretando que o Eixo Y corresponde a um numerador duma fração e o Eixo X, a um denominador da mesma, quais são todas as cominações de números INTEIROS possíveis para essa fração no intervalo (destacado pelo seg. de reta em verm.) de 12, oscilando a 17, até 360.
Essa oscilação no inicio do intervalo é dada por (x, y) = ([5(i)+79]/7, [5(i)+79]/7). E "i" corresponde à razão da fração.
Traduzindo tudo isto... tem-se uma fração y/x=i e este i varia de 1 a 8 (com incremento de 0,125).
(upei o arquivo para download)
http://www.4shared.com/rar/mhQ8yRZB/relao.html
Porque tudo isto!?
É uma parte do meu TCC de Téc. em Mecânica. X e Y da fração corresponde ao número de dentes dum par de engrenagem conjugadas, como não pode existir uma engrenagem com 21 dentes e meio, por ex., é necessário uma relação somente de números inteiros. Dividindo o número de dentes duma engrenagem pelo o da sua conjugada, obtem-se uma relação (i), este i multiplica o torque de entrada e divide o rpm de entrada, obtendo um novo torque e rpm de saída, ou seja, é um "redutor de velocidade"!
curiosidades: conforme a relação (i) tende para 1, o número mín. de dentes das engrenagens pode ser 12, e i tendendo para 8 (máx), 17 dentes no mínimo.
E agora, como fazer pra determinar esses numeros inteiros... qualquer coisa é válida... construção geométrica, manipulação algébrica, recursos com planilha... no final... quero transportar esses números para uma planilha...
Alguém tem alguma IDEIA?
Obg,
José