• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como chega ao resultado

como chega ao resultado

Mensagempor giboia90 » Dom Ago 19, 2012 17:41

gostaria que detalhasse esse o segundo passo do limite.

\lim_{x\rightarrow \infty }\left[  \sqrt[]{x + \sqrt[]{x + \sqrt[]{x}}} - \sqrt[]{x}\right]

eo segundo passo

\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}{\left(1+\frac{1}{\sqrt[]{x}} \right)}^{\frac{1}{2}}}{\sqrt[]{x}\left[ {\left(1+\frac{1}{\sqrt[]{x}} \sqrt[]{1+\frac{1}{\sqrt[]{x}}}\right)}^{\frac{1}{2}}+1\right]}
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: como chega ao resultado

Mensagempor MarceloFantini » Dom Ago 19, 2012 20:46

Não entendo o que você gostaria de esclarecer. O segundo limite que escreveu é o segundo passo que você quer entender?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como chega ao resultado

Mensagempor giboia90 » Dom Ago 19, 2012 21:16

sim são o mesmo limite, so queria saber como chega ao segundo passo e como:

\sqrt[]{x+\sqrt[]{x}} = \sqrt[]{x}{\left(1+ \frac{1}{\sqrt[]{x}} \right)}^{\frac{1}{2}}
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: como chega ao resultado

Mensagempor MarceloFantini » Dom Ago 19, 2012 22:49

Note que x + \sqrt{x} = x \cdot 1 + x \left( \frac{1}{\sqrt{x}} \right) = x \left( 1 + \frac{1}{\sqrt{x}} \right), daí \left( x \left( 1 + \frac{1}{\sqrt{x}} \right) \right)^{\frac{1}{2}} = \sqrt{x} \left( 1 + \frac{1}{\sqrt{x}} \right)^{\frac{1}{2}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como chega ao resultado

Mensagempor giboia90 » Dom Ago 19, 2012 23:07

mas como
\sqrt[]{x}= x\left(\frac{1}{\sqrt[]{x}} \right)
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: como chega ao resultado

Mensagempor MarceloFantini » Seg Ago 20, 2012 14:09

Note que \sqrt{x} = x^{\frac{1}{2}} = x^{1 - \frac{1}{2}} = x^1 \cdot x^{-\frac{1}{2}} = x \cdot \frac{1}{x^{\frac{1}{2}}} = x \cdot \frac{1}{\sqrt{x}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.