• Anúncio Global
    Respostas
    Exibições
    Última mensagem

como chega ao resultado

como chega ao resultado

Mensagempor giboia90 » Dom Ago 19, 2012 17:41

gostaria que detalhasse esse o segundo passo do limite.

\lim_{x\rightarrow \infty }\left[  \sqrt[]{x + \sqrt[]{x + \sqrt[]{x}}} - \sqrt[]{x}\right]

eo segundo passo

\lim_{x\rightarrow\infty}\frac{\sqrt[]{x}{\left(1+\frac{1}{\sqrt[]{x}} \right)}^{\frac{1}{2}}}{\sqrt[]{x}\left[ {\left(1+\frac{1}{\sqrt[]{x}} \sqrt[]{1+\frac{1}{\sqrt[]{x}}}\right)}^{\frac{1}{2}}+1\right]}
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: como chega ao resultado

Mensagempor MarceloFantini » Dom Ago 19, 2012 20:46

Não entendo o que você gostaria de esclarecer. O segundo limite que escreveu é o segundo passo que você quer entender?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como chega ao resultado

Mensagempor giboia90 » Dom Ago 19, 2012 21:16

sim são o mesmo limite, so queria saber como chega ao segundo passo e como:

\sqrt[]{x+\sqrt[]{x}} = \sqrt[]{x}{\left(1+ \frac{1}{\sqrt[]{x}} \right)}^{\frac{1}{2}}
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: como chega ao resultado

Mensagempor MarceloFantini » Dom Ago 19, 2012 22:49

Note que x + \sqrt{x} = x \cdot 1 + x \left( \frac{1}{\sqrt{x}} \right) = x \left( 1 + \frac{1}{\sqrt{x}} \right), daí \left( x \left( 1 + \frac{1}{\sqrt{x}} \right) \right)^{\frac{1}{2}} = \sqrt{x} \left( 1 + \frac{1}{\sqrt{x}} \right)^{\frac{1}{2}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: como chega ao resultado

Mensagempor giboia90 » Dom Ago 19, 2012 23:07

mas como
\sqrt[]{x}= x\left(\frac{1}{\sqrt[]{x}} \right)
giboia90
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Dom Dez 04, 2011 01:06
Formação Escolar: GRADUAÇÃO
Área/Curso: engeharia civil
Andamento: cursando

Re: como chega ao resultado

Mensagempor MarceloFantini » Seg Ago 20, 2012 14:09

Note que \sqrt{x} = x^{\frac{1}{2}} = x^{1 - \frac{1}{2}} = x^1 \cdot x^{-\frac{1}{2}} = x \cdot \frac{1}{x^{\frac{1}{2}}} = x \cdot \frac{1}{\sqrt{x}}.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)