• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Produto Tensorial] Tensores como aplicações lineares?

[Produto Tensorial] Tensores como aplicações lineares?

Mensagempor CaptainObvious » Sex Ago 17, 2012 22:05

Boa noite à todos no fórum. Estou trabalhando alguns exercícios de álgebra linear, e esbarrei com um problema que me gerou uma dúvida, possivelmente conceitual. A questão é a seguinte:

Mostre que para E = R^n e F = R^m temos:

L(E,F) = E^* \;\otimes\; F

Onde L(E,F) é o espaço das aplicações lineares de E em F, E* é o dual de E e o produto entre E* e F é o produto tensorial entre os espaços.

Tentativa:

A tentativa consiste em fazer uma dupla inclusão entre os espaços, i.e., demonstrar que dado um elemento qualquer de L(E,F), este também se encontra em prodT(E*,F) e vice-versa. Se temos uma aplicação A de R^n em R^m, como afirmar que A é igual a um elemento de prodT(E*,F)? Alguém teria alguma dica?

Desde já agradeço
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor MarceloFantini » Sáb Ago 18, 2012 00:38

O que você afirma não é verdade, estes dois espaços não são iguais. Entretanto, existe um isomorfismo entre eles, logo \mathcal{L}(E,F) \simeq E^{\ast} \otimes F. Não sei que resultados você tem ao seu dispor, mas se você notar que \dim E^{\ast} = \dim E = n, \dim F = m, \dim E^{\ast} \otimes F = \dim E^{\ast} \cdot \dim F = nm e \dim \mathcal{L}(E,F) = \dim E \cdot \dim F = nm, portanto \mathcal{L}(E,F) \simeq E^{\ast} \otimes F.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor CaptainObvious » Sáb Ago 18, 2012 08:45

Obrigado pela resposta. Justamente isso me incomodava. Apesar de precisar provar que são iguais, não conseguia motivo algum para poder afirmá-lo. Depois de ter postado, ainda tentei uma solução um pouco menos elegante: Construir uma bijeção entre os dois espaços.

Basicamente o que fiz foi associar uma aplicação A de L(E,F), com uma aplicação f de E^*\otimes F tal que:

f_A: R^n \rightarrow R \otimes R^m \; ; \;  \sum^n_{j=1}(\lambda_{j}.e_{i}) \mapsto \sum^m_{i=1}( \sum^n_{j=1}(\lambda_{j}.a_{ij}*1\otimes e_{i}))

onde os 1 \otimes e_{i} são base para R \otimes R^m

Deste modo associaremos cada aplic. de L(E,F) à uma de E^*\otimes F tal que eles levam vetores iguais em vetores de igual representação nas respectivas bases de seus contradomínios. Acha que seguir essa linha estaria correto?
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor MarceloFantini » Sáb Ago 18, 2012 12:16

Para mostrar que são isomorfos você precisa encontrar uma transformação linear invertível entre os dois espaços. Entretanto, acho que essa sua primeira tentativa de transformação não funciona. E lembre-se: estes dois espaços não são iguais!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.