• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Produto Tensorial] Tensores como aplicações lineares?

[Produto Tensorial] Tensores como aplicações lineares?

Mensagempor CaptainObvious » Sex Ago 17, 2012 22:05

Boa noite à todos no fórum. Estou trabalhando alguns exercícios de álgebra linear, e esbarrei com um problema que me gerou uma dúvida, possivelmente conceitual. A questão é a seguinte:

Mostre que para E = R^n e F = R^m temos:

L(E,F) = E^* \;\otimes\; F

Onde L(E,F) é o espaço das aplicações lineares de E em F, E* é o dual de E e o produto entre E* e F é o produto tensorial entre os espaços.

Tentativa:

A tentativa consiste em fazer uma dupla inclusão entre os espaços, i.e., demonstrar que dado um elemento qualquer de L(E,F), este também se encontra em prodT(E*,F) e vice-versa. Se temos uma aplicação A de R^n em R^m, como afirmar que A é igual a um elemento de prodT(E*,F)? Alguém teria alguma dica?

Desde já agradeço
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor MarceloFantini » Sáb Ago 18, 2012 00:38

O que você afirma não é verdade, estes dois espaços não são iguais. Entretanto, existe um isomorfismo entre eles, logo \mathcal{L}(E,F) \simeq E^{\ast} \otimes F. Não sei que resultados você tem ao seu dispor, mas se você notar que \dim E^{\ast} = \dim E = n, \dim F = m, \dim E^{\ast} \otimes F = \dim E^{\ast} \cdot \dim F = nm e \dim \mathcal{L}(E,F) = \dim E \cdot \dim F = nm, portanto \mathcal{L}(E,F) \simeq E^{\ast} \otimes F.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor CaptainObvious » Sáb Ago 18, 2012 08:45

Obrigado pela resposta. Justamente isso me incomodava. Apesar de precisar provar que são iguais, não conseguia motivo algum para poder afirmá-lo. Depois de ter postado, ainda tentei uma solução um pouco menos elegante: Construir uma bijeção entre os dois espaços.

Basicamente o que fiz foi associar uma aplicação A de L(E,F), com uma aplicação f de E^*\otimes F tal que:

f_A: R^n \rightarrow R \otimes R^m \; ; \;  \sum^n_{j=1}(\lambda_{j}.e_{i}) \mapsto \sum^m_{i=1}( \sum^n_{j=1}(\lambda_{j}.a_{ij}*1\otimes e_{i}))

onde os 1 \otimes e_{i} são base para R \otimes R^m

Deste modo associaremos cada aplic. de L(E,F) à uma de E^*\otimes F tal que eles levam vetores iguais em vetores de igual representação nas respectivas bases de seus contradomínios. Acha que seguir essa linha estaria correto?
CaptainObvious
Usuário Ativo
Usuário Ativo
 
Mensagens: 10
Registrado em: Sex Ago 17, 2012 21:22
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática Aplicada
Andamento: cursando

Re: [Produto Tensorial] Tensores como aplicações lineares?

Mensagempor MarceloFantini » Sáb Ago 18, 2012 12:16

Para mostrar que são isomorfos você precisa encontrar uma transformação linear invertível entre os dois espaços. Entretanto, acho que essa sua primeira tentativa de transformação não funciona. E lembre-se: estes dois espaços não são iguais!
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.