• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área paralelograma

Área paralelograma

Mensagempor Malorientado » Seg Ago 06, 2012 23:51

Uma placa de alumínio tem a forma de um paralelograma. Suas medidas estão indicadas na figura(Na figura, há um paralelograma de base 40cm e lado 25 cm, o seu ângulo inferior da direita é 120°). Calcule a área dessa placa. Dúvida: Posso achar a área por base . lado? Seria a mesma coisa de um retângulo de base 40 e lado 25, não seria?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Área paralelograma

Mensagempor MarceloFantini » Ter Ago 07, 2012 03:23

Não exatamente. Você precisa encontrar a altura do lado relativo à base. Num retângulo isto coincide, não é o caso do paralelogramo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área paralelograma

Mensagempor Malorientado » Sex Ago 10, 2012 22:48

Achando a área do paralelograma por 2 vezes a área do triângulo de lados 40 e 25cm e ângulo 120°, em \frac{40 . 25} {2} . sen 120, obtive 580cm², é isso? Bom não sei porque não consegui resolver esse exercício encontrando a altura do paralelograma pelo cosseno de 30°(subindo uma reta em 90° no ângulo de 120°, sobra um ângulo de 30°,correto?) fiz cos 30°= 0,154= \frac {altura} {25}, altura= 25 . 0,154= 3,85, \frac {base . altura} {2}= \frac {40 . 3,85} {2}= 77. Onde errei?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Área paralelograma

Mensagempor MarceloFantini » Sex Ago 10, 2012 23:47

Você está com valores errados, note que h = \cos \left( \frac{\pi}{6} \right) \cdot 25 = 25 \cdot 0,87 = 21,65 e daí a área seria b \cdot h = 40 \cdot 21,65 \approx 866 \text{ u.a.}.

Ou seja, \cos \left( \frac{\pi}{6} \right) = 0,866 e não 0,153.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área paralelograma

Mensagempor Malorientado » Sex Ago 10, 2012 23:58

O valor para cos 30°peguei da net, maldita... Então do primeiro jeito que fiz obtive 580cm² e desse outro, 866cm². Qual das duas respostas está correta? Qual o erro da incorreta?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Área paralelograma

Mensagempor MarceloFantini » Sáb Ago 11, 2012 00:26

A área de um paralelogramo é base vezes altura, logo A = b \cdot h, onde você pode escrever a altura em função do outro lado usando trigonometria. Note que a sua expressão não é coerente pois você ainda divide por dois.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área paralelograma

Mensagempor Malorientado » Sáb Ago 11, 2012 01:00

Na primeira tentativa de resolução, como não tinha a altura, resolvi achar a área do triângulo de lados 40 e 25cm e ângulo 120° pela fórmula \frac{lado *lado} {2} * sen 120. Encontrando essa área, bastaria multiplicar por 2, pois o paralelograma é = a 2 triângulos. Não é isso?
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Área paralelograma

Mensagempor MarceloFantini » Sáb Ago 11, 2012 01:09

Realmente, o método está correto porém você deve ter errado o valor do seno. O resultado será o mesmo.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Área paralelograma

Mensagempor Malorientado » Sáb Ago 11, 2012 01:18

Maldito google, olha o quanto nos atrasou? O valor que ele retorna para sen 120 = 0,580611184...
Malorientado
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Seg Ago 06, 2012 23:41
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Área paralelograma

Mensagempor MarceloFantini » Sáb Ago 11, 2012 01:25

O google está programado para aceitar o valor em radianos, não em graus. O equívoco na verdade foi seu.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59