• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Complexos- demonstração com conjugado.

Complexos- demonstração com conjugado.

Mensagempor emsbp » Sex Ago 03, 2012 18:10

Boa tarde. É pedido para demonstrar a seguinte igualdade: \frac{1}{{z}^{n}}= \frac{1}{conjugado de {z}^{n}}. (Peço desculpa, mas não consegui encontrar o símbolo de conjugado no editor).
Comecei por atribuir z=\rho cis\Theta, donde {z}^{n} = {\rho}^{n}cis(n\theta). Donde o seu conjugado será {\rho}^{n}cis(-n\theta). Para \frac{1}{{z}^{n}}=\frac{cis 0}{{\rho}^{n}cis(n\Theta)}=\frac{1}{{\rho}^{n}}cis(-n\Theta). Procedi do mesmo modo para o outro quociente e obtive \frac{1}{conjugado de{z}^{n}}=\frac{cis 0}{{\rho}^{n}cis(-n\Theta)}=\frac{1}{{\rho}^{n}}cis(n\Theta). No entanto, os ângulos são diferentes. O que me está a escapar?
Obrigado.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Complexos- demonstração com conjugado.

Mensagempor MarceloFantini » Sex Ago 03, 2012 18:46

Tem certeza da igualdade? Tome z=i, então \frac{1}{z^n} = \frac{1}{i^n} = \frac{1}{\overline{i^n}} = \frac{1}{(-i)^n}, que não é verdadeiro para todo n.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Complexos- demonstração com conjugado.

Mensagempor emsbp » Sex Ago 03, 2012 19:17

No manual vem tal e qual como apresentei. Também estranhei.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.