• Anúncio Global
    Respostas
    Exibições
    Última mensagem

pontos notáveis do triângulo

pontos notáveis do triângulo

Mensagempor lenda » Qua Jul 18, 2012 17:01

Num triângulo retângulo ABC, D é o ponto médio do lado AC e CE é a bissetriz do ângulo ACB.Determine a medida do ângulo BFC.
Resposta: 105 graus.
Grata a quem responder! Estou errando em algo mas não consegui descobrir onde!
lenda
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Jul 17, 2012 22:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: telecomunicações
Andamento: formado

Re: pontos notáveis do triângulo

Mensagempor Arkanus Darondra » Qua Jul 18, 2012 17:19

lenda escreveu:Num triângulo retângulo ABC, D é o ponto médio do lado AC e CE é a bissetriz do ângulo ACB.Determine a medida do ângulo BFC.

Confira o enunciado (ponto F).
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: pontos notáveis do triângulo

Mensagempor lenda » Qua Jul 18, 2012 17:40

Ponto F é o ponto de encontro com a mediana que sai do ângulo de 90 graus com a bissetriz que sai do ângulo C.
lenda
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Jul 17, 2012 22:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: telecomunicações
Andamento: formado

Re: pontos notáveis do triângulo

Mensagempor Arkanus Darondra » Qua Jul 18, 2012 18:04

Faltam dados e o enunciado está incompleto.
Poste a figura.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: pontos notáveis do triângulo

Mensagempor lenda » Qua Jul 18, 2012 20:23

Não está incompleto.O problema é assim mesmo não possui figura.Nós temos que montá-la.
lenda
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Jul 17, 2012 22:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: telecomunicações
Andamento: formado

Re: pontos notáveis do triângulo

Mensagempor Arkanus Darondra » Qua Jul 18, 2012 21:07

lenda escreveu:Não está incompleto.O problema é assim mesmo não possui figura.Nós temos que montá-la.

Encontrei sua questão neste link (questão 7):
Cevianas Notáveis de um Triângulo

Está incompleto porque falta a figura, e faltam dados porque na figura o ângulo BÂC é 40º:
Imagem

Se \overline{EC} é bissetriz, A\widehat{C}E=B\widehat{C}E = 25º

Se D é ponto médio de \overline{AC} e o triângulo é retângulo ("inscritível" numa cincunferência), então \overline{AD}=\overline{CD}=\overline{BD} (raio).

Tente concluir.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: pontos notáveis do triângulo

Mensagempor lenda » Qui Jul 19, 2012 15:05

Olá Arkanus,grata pelas questões respondidas e me desculpe pelas falhas.
Quanto a esta questão até onde você resolveu eu já havia conseguido,o problema é que o triângulo CDF é isósceles e como possui os ângulos da base congruentes o outo ângulo também será 25 graus vamos ter um ângulo raso (180 graus menos 25 graus que não dará 105 graus como resposta).
Onde estou errando!
lenda
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Jul 17, 2012 22:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: telecomunicações
Andamento: formado

Re: pontos notáveis do triângulo

Mensagempor Arkanus Darondra » Qui Jul 19, 2012 15:20

lenda escreveu:Quanto a esta questão até onde você resolveu eu já havia conseguido,o problema é que o triângulo CDF é isósceles e como possui os ângulos da base congruentes o outo ângulo também será 25 graus vamos ter um ângulo raso (180 graus menos 25 graus que não dará 105 graus como resposta).
Onde estou errando!

Eu parei nesta parte porque há várias maneiras de prosseguir.
O \Delta CDF não é isósceles.

Uma das maneiras de continuar seria:

\Delta BCD é isósceles: \widehat{B}=\widehat{C} = 50º \Rightarrow \widehat{D} = 80º

B\widehat{F}C é externo ao triângulo CDF, portanto o ângulo BFC é 80º + 25º = 105º

:y:
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: pontos notáveis do triângulo

Mensagempor lenda » Qui Jul 19, 2012 15:38

Muito obrigada!
Estava meio cega em relação a este problema!
Abraço!!!!
lenda
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Jul 17, 2012 22:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: telecomunicações
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D