• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite - assintotas

Limite - assintotas

Mensagempor emsbp » Seg Jul 16, 2012 17:56

Boa tarde. Como posso resolver o seguinte exercício:
«A reta de equação y=-2x+1 é assíntota do gráfico de uma função f, de domínio {\Re}^{+}. Qual o valor de \lim_{x\rightarrow+\infty}(\frac{f(x)}{x}+2f(x)+4x)»
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Limite - assintotas

Mensagempor skin » Seg Jul 16, 2012 21:06

emsbp escreveu:Boa tarde. Como posso resolver o seguinte exercício:
«A reta de equação y=-2x+1 é assíntota do gráfico de uma função f, de domínio {\Re}^{+}. Qual o valor de \lim_{x\rightarrow+\infty}(\frac{f(x)}{x}+2f(x)+4x)»
Obrigado!


Veja,
\lim_{x\rightarrow+\infty}(\frac{f(x)}{x}+2f(x)+4x)=

\lim_{x\rightarrow+\infty}\frac{f(x)}{x}+\lim_{x\rightarrow+\infty}(2f(x)+4x)

e como y=-2x+1 é assintota def(x) significa que \lim_{x\rightarrow+\infty}f(x)=\lim_{x\rightarrow+\infty}-2x+1.

Para resolver \lim_{x\rightarrow+\infty}\frac{f(x)}{x} vc pode usar L'Hopital.

Espero que ajude.
Editado pela última vez por skin em Seg Jul 16, 2012 21:11, em um total de 1 vez.
skin
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Jul 15, 2012 21:19
Localização: Campinas
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite - assintotas

Mensagempor Russman » Seg Jul 16, 2012 21:08

Você sabe o que é uma assíntota?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Limite - assintotas

Mensagempor skin » Seg Jul 16, 2012 21:11

Russman escreveu:Você sabe o que é uma assíntota?

:-O
skin
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Jul 15, 2012 21:19
Localização: Campinas
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite - assintotas

Mensagempor e8group » Seg Jul 16, 2012 21:19

seria ?

\lim_{x\to+\infty} f(x) = -2x+1 , \forall x \geq 0
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite - assintotas

Mensagempor Russman » Seg Jul 16, 2012 21:31

skin escreveu:
Russman escreveu:Você sabe o que é uma assíntota?

:-O


Eu perguntei para o criador do tópico! kk
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Limite - assintotas

Mensagempor skin » Ter Jul 17, 2012 01:50

santhiago escreveu:seria ?

\lim_{x\to+\infty} f(x) = -2x+1 , \forall x \geq 0


Santhiago,
f(x) = -2x+1 apenas no infinito, por isso escrevemos \lim_{x\rightarrow+\infty}f(x)=\lim_{x\rightarrow+\infty}-2x+1.

Só um detalhe....
skin
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Jul 15, 2012 21:19
Localização: Campinas
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Limite - assintotas

Mensagempor emsbp » Ter Jul 17, 2012 08:55

Sim, sei o que é uma assintota.
No problema que vos dei, trata-se de uma assintota não vertical, mais concretamente uma assintota oblíqua.
Como temos Y=-2x+1, o declive (m), desta reta será -2, donde m=\lim_{x\rightarrow+\infty}\frac{f(x)}{x}=-2.
Substituindo, no limite pedido fico com -2+\lim_{x\rightarrow+\infty} (2f(x) +4x).
A partir daqui, a minha dúvida reside no cálculo do limite que ficou.
Obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Limite - assintotas

Mensagempor e8group » Ter Jul 17, 2012 10:53

emsbp , acho que você pode fazer assim (vamos ver que os demais usuário acham ) ,

- 2 + \lim_{x\to +\infty} \left(2f(x) + 4x\right) = -2 + \lim_{x\to +\infty} \left[x \left(2\frac{f(x)}{x} + 4\right)\right ]
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite - assintotas

Mensagempor skin » Ter Jul 17, 2012 15:44

emsbp escreveu:-2+\lim_{x\rightarrow+\infty} (2f(x) +4x).
A partir daqui, a minha dúvida reside no cálculo do limite que ficou.
Obrigado!


Para calcular esse limite, vc precisa usar a informação da assíntota, i.e, \lim_{x\rightarrow+\infty}f(x)=\lim_{x\rightarrow+\infty}-2x+1.

Veja:

\lim_{x\rightarrow+\infty} (2f(x) +4x) =

= 2\lim_{x\rightarrow+\infty}f(x) +\lim_{x\rightarrow+\infty} 4x=

= 2\lim_{x\rightarrow+\infty}(-2x+1)+\lim_{x\rightarrow+\infty} 4x=

=\lim_{x\rightarrow+\infty}[2(-2x+1)+4x]=2

:y:
skin
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Jul 15, 2012 21:19
Localização: Campinas
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?