• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[ Derivadas ]

[ Derivadas ]

Mensagempor milerengcomp » Dom Jul 08, 2012 20:02

Se w=ln[(x^2)*(y^2)/4*z^3], com x=e^t, y = sen(t) e z = cos(t), encontre dw/dt.
Estou meio travado com o desenvolvimento. Se puderem explicar passo-a-passo (nem precisa ser muito detalhado), agradeço.
milerengcomp
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 20, 2012 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [ Derivadas ]

Mensagempor e8group » Dom Jul 08, 2012 20:15

w = ln\left(\frac{x^2y^2}{4z^3}\right) ,Aplicando as propriedades do logaritmo obtemos que :

w = ln(x^2) +ln(y^2) -ln(4z^3) ou seja ,pelo enunciado temos


w = 2t +ln(sin^2(t)) -ln(4cos^3(t)) Tente derivar a parti daí ...
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [ Derivadas ]

Mensagempor Russman » Dom Jul 08, 2012 20:21

Regra da cadeia!

\frac{\mathrm{d} }{\mathrm{d} t}w(x,y,z) = \frac{\partial w }{\partial x}\frac{\mathrm{d}x }{\mathrm{d} t} + \frac{\partial w }{\partial y}\frac{\mathrm{d}y }{\mathrm{d} t} + \frac{\partial w }{\partial z}\frac{\mathrm{d}z }{\mathrm{d} t}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [ Derivadas ]

Mensagempor milerengcomp » Dom Jul 08, 2012 21:16

Nossa, estou me sentindo um idiota.
Obrigado a todos!
milerengcomp
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 20, 2012 21:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.