• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Funções - provar propriedade

Funções - provar propriedade

Mensagempor emsbp » Sáb Jul 07, 2012 17:59

Boa tarde.
O exercício é o seguinte: «Considere uma função real de varável real contínua de domínio [a,b]. Prove que a média aritmática de quaisquer dois valores da função é também um valor da função.»
Comecei por calcular a média aritmética dos valores f(a) e f(b): \frac{f(a)+f(b)}{2}. Sei que temos que usar o teorema de Bolzano ou o seu corolário, mas a partir daí não sei como fazer.
Peço ajuda.
Obrigado.
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado

Re: Funções - provar propriedade

Mensagempor MarceloFantini » Sáb Jul 07, 2012 21:57

Note que f(a) \leq \frac{f(a)+f(b)}{2} \leq f(b), assumindo f(a) \leq f(b). Pelo teorema do valor intermediário, existe c \in (a,b) tal que f(c) = \frac{f(a) +f(b)}{2}.

Outra forma é considerar g(x) = f(x) - \frac{(f(a)+f(b))}{2}, então g(a) = \frac{2f(a) -f(a) -f(b)}{2} = \frac{f(a) - f(b)}{2} < 0 e g(b) = \frac{f(b)-f(a)}{2} > 0, pelo teorema de Bolzano existe c \in (a,b) tal que g(c) = 0, implicando f(c) - \frac{(f(a) + f(b))}{2} = 0.

Importante perceber que podemos assumir sem perda de generalidade que f(a) \leq f(b). Se assumíssemos que f(a) \geq f(b) a primeira resolução não mudaria nada, enquanto que na segunda a única diferença seria que g(a) > 0 e g(b) < 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Funções - provar propriedade

Mensagempor emsbp » Dom Jul 08, 2012 18:27

Ok. Muito obrigado!
emsbp
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Sex Mar 09, 2012 11:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática/Informática
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59