• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular

Inequação Modular

Mensagempor Rafael16 » Qui Jul 05, 2012 12:01

Na inequação \left|\frac{x - 4}{3x - 1} \right| \geq 2

Para (I):
\frac{x - 4}{3x - 1}\geq 2

Para (II):
\frac{x - 4}{3x - 1} \leq -2

Depois faz a UNIÃO das soluções de cada inequação que fica
S = {x\in\Re\left|\frac{-2}{5} \leq x \leq \frac{6}{7} e x\neq\frac{1}{3}}

Na inequação \left|\frac{2x + 3}{x - 1} \right| < 4
A solução é
S= {x\in\Re| x < \frac{1}{6} ou x > \frac{7}{2}}

O que eu não entendi foi que na primeira inequação, para achar a solução, usa-se a UNIÃO, e na segunda inequação usa-se a INTERSECÇÃO.Por que não pode usar união?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Inequação Modular

Mensagempor Russman » Qui Jul 05, 2012 13:20

Para a primeira equação, ou

\frac{x-4}{3x-1} \geq 2

ou

\frac{x-4}{3x-1} \geq -2.

Da primeira, x\geq -\frac{2}{5}. E da segunda, x\leq \frac{6}{7}.

Assim, se você desenhar os intervalos vera que se unem de forma que {x \in \Re / x \in [ -\frac{2}{5} ,  \frac{1}{3}) \cup (\frac{1}{3} ,\frac{6}{7}]}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Inequação Modular

Mensagempor Russman » Qui Jul 05, 2012 13:33

Na segunda as soluções são x > \frac{7}{2} e x < \frac{1}{6}.

Unindo os intervalos, temos

x \in \Re / x \in ( -\infty ,  \frac{1}{6}) \cup (\frac{7}{2} ,\infty)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.