• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação Modular

Inequação Modular

Mensagempor Rafael16 » Qui Jul 05, 2012 12:01

Na inequação \left|\frac{x - 4}{3x - 1} \right| \geq 2

Para (I):
\frac{x - 4}{3x - 1}\geq 2

Para (II):
\frac{x - 4}{3x - 1} \leq -2

Depois faz a UNIÃO das soluções de cada inequação que fica
S = {x\in\Re\left|\frac{-2}{5} \leq x \leq \frac{6}{7} e x\neq\frac{1}{3}}

Na inequação \left|\frac{2x + 3}{x - 1} \right| < 4
A solução é
S= {x\in\Re| x < \frac{1}{6} ou x > \frac{7}{2}}

O que eu não entendi foi que na primeira inequação, para achar a solução, usa-se a UNIÃO, e na segunda inequação usa-se a INTERSECÇÃO.Por que não pode usar união?
Rafael16
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 154
Registrado em: Qui Mar 01, 2012 22:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Análise de Sistemas
Andamento: cursando

Re: Inequação Modular

Mensagempor Russman » Qui Jul 05, 2012 13:20

Para a primeira equação, ou

\frac{x-4}{3x-1} \geq 2

ou

\frac{x-4}{3x-1} \geq -2.

Da primeira, x\geq -\frac{2}{5}. E da segunda, x\leq \frac{6}{7}.

Assim, se você desenhar os intervalos vera que se unem de forma que {x \in \Re / x \in [ -\frac{2}{5} ,  \frac{1}{3}) \cup (\frac{1}{3} ,\frac{6}{7}]}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Inequação Modular

Mensagempor Russman » Qui Jul 05, 2012 13:33

Na segunda as soluções são x > \frac{7}{2} e x < \frac{1}{6}.

Unindo os intervalos, temos

x \in \Re / x \in ( -\infty ,  \frac{1}{6}) \cup (\frac{7}{2} ,\infty)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59