por Vitor2+ » Sáb Jun 30, 2012 23:04
Estou com dúvida a respeito da questão indicada abaixo. Resolvi a mesma, porém, como o professosr não deu o gabarito da questão não sei se a resoluçaõ está certa. Alguém poderia indicar se existe algo errado ou se a questão está correta? Agradeço
CALCULE AS DERIVADAS PARCIAIS DE 2ª ORDEM DA FUNÇÃO f(x,y)=cos(x³+xy):
Resolução:




[/tex]
-
Vitor2+
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Seg Nov 14, 2011 01:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por brunoiria » Dom Jul 01, 2012 00:57
sim, tem erros em

ao derivar

isso da

;

ao derivar

isso da

;
consequentemente vc errou

e

, reveja ai;
e esta faltando as parciais mistas, boa sorte ai
-
brunoiria
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sáb Jun 23, 2012 10:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic Mat
- Andamento: cursando
por LuizAquino » Dom Jul 01, 2012 10:29
Vitor2+ escreveu:Estou com dúvida a respeito da questão indicada abaixo. Resolvi a mesma, porém, como o professosr não deu o gabarito da questão não sei se a resoluçaõ está certa. Alguém poderia indicar se existe algo errado ou se a questão está correta? Agradeço
CALCULE AS DERIVADAS PARCIAIS DE 2ª ORDEM DA FUNÇÃO f(x,y)=cos(x³+xy):
Resolução:




[/tex]
Eu gostaria de lhe dar uma dica para estudar a resolução de uma derivada. Você pode usar um programa para isso! Por exemplo, o
SAGE, o Mathematica, o Maple, etc.
Alguns desses programas são disponibilizados também na forma de uma página na internet. É o caso do
SAGE Notebook e do Mathematica. Por exemplo, siga os passos abaixo para conferir a resolução de

.
- Acesse a página: http://www.wolframalpha.com/
- No campo de entrada, digite:
- Código: Selecionar todos
d^2/dx^2 cos(x^3 + xy)
- Clique no botão de igual ao lado do campo de entrada.
- Após a derivada ser calculada, clique no botão "Show steps" ao lado do resultado.
- Pronto! Agora basta estudar a resolução.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada Parcial de 1ª Ordem] - Derivada parcial num ponto
por Vitor2+ » Dom Jul 01, 2012 16:27
- 6 Respostas
- 4789 Exibições
- Última mensagem por e8group

Seg Jul 02, 2012 10:56
Cálculo: Limites, Derivadas e Integrais
-
- derivada parcial de segunda ordem
por gregorylino » Qui Set 26, 2013 11:39
- 1 Respostas
- 1784 Exibições
- Última mensagem por gregorylino

Qui Set 26, 2013 16:39
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada Parcial] Pedido de ajuda para resolução
por itsdeas » Sex Nov 07, 2014 18:21
- 3 Respostas
- 3163 Exibições
- Última mensagem por young_jedi

Seg Nov 10, 2014 20:25
Cálculo: Limites, Derivadas e Integrais
-
- [derivada parcial] duvida no enunciado da questao
por ricardosanto » Sáb Jun 02, 2012 00:32
- 4 Respostas
- 2680 Exibições
- Última mensagem por MarceloFantini

Sáb Jun 02, 2012 18:56
Cálculo: Limites, Derivadas e Integrais
-
- Questão regra da cadeia - Derivada parcial
por Sobreira » Qua Mar 13, 2013 00:59
- 1 Respostas
- 3374 Exibições
- Última mensagem por young_jedi

Qui Mar 14, 2013 11:15
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.