por allakyhero » Sáb Jun 30, 2012 12:41
Bom dia a todos!
Estou estudando "Valores Máximo e Mínimo" com auxilio de um livro, até esse momento compreendo a questão de que cavidade para cima é máximo e cavidade para baixo é mínimo etc...
Só que não compreendo como faço a resolução do problema.
Por exemplo, a questão 49 do livro.
49. f(x) = 3x² - 12x + 5, [0, 3]
f'(x) = 6x¹ - 12, [0, 3]
f'(x) = 6x - 12 = 0
Depois dai não sei o que fazer...
Alguém poderia me auxiliar?
-
allakyhero
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 30, 2012 12:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Russman » Sáb Jun 30, 2012 14:41
Você deseja calcular o ponto extremo da função f(x) = 3x² - 12x + 5 ?
Para isto, derive-a. A teoria garante que a função é extrema no ponto em que f'(x) = 0. Assim,
f'(x) = 6x-12 = 0 ----> x=2.
O valor dessa função é dado tomando então, x=2.
f(x=2) = 3.2² - 12.2 + 5 = -12 + 5 = -7.
Portanto o ponto extremo dessa função é (2,-7). Como, f''(x) = 6 >0 o ponto de extremo é de mínimo pois a função é concava para baixo!
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por MarceloFantini » Sáb Jun 30, 2012 18:13
Russman, você quis dizer que a função é côncava para cima, certo? Se fosse côncava para baixo seria um ponto de máximo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Russman » Sáb Jun 30, 2012 18:40
MarceloFantini escreveu:Russman, você quis dizer que a função é côncava para cima, certo? Se fosse côncava para baixo seria um ponto de máximo.
Isso, isso. Troquei as palavras. k
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por allakyhero » Dom Jul 01, 2012 00:43
Russman, Obrigado
Poderia me explicar porque "x = 2" ?
-
allakyhero
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 30, 2012 12:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Dom Jul 01, 2012 10:18
Russman escreveu:A teoria garante que a função é extrema no ponto em que f'(x) = 0.
Cuidado! A teoria não garante isso.
Por exemplo, para a função

temos que

. Entretanto, no ponto x = 1 não temos nem máximo e nem mínimo para essa função.
O correto seria dizer algo como: "
a teoria garante que a função pode ser extrema no ponto em que f'(x) = 0".
Observe que "
pode ser" e "
é" são coisas bem distintas!
allakyhero escreveu:Estou estudando "Valores Máximo e Mínimo" com auxilio de um livro, até esse momento compreendo a questão de que cavidade para cima é máximo e cavidade para baixo é mínimo etc...
Só que não compreendo como faço a resolução do problema.
Por exemplo, a questão 49 do livro.
49. f(x) = 3x² - 12x + 5, [0, 3]
f'(x) = 6x¹ - 12, [0, 3]
f'(x) = 6x - 12 = 0
Depois dai não sei o que fazer...
Alguém poderia me auxiliar?
Observe que o exercício lhe forneceu uma função (no caso, f(x) = 3x² - 12x + 5) e um intervalo (no caso, [0, 3]).
Nesse contexto, a ideia é usar o chamado "Método do Intervalo Fechado" para resolver o exercício. Para saber mais a respeito desse método, eu gostaria de recomendar que você assista a videoaula "19. Cálculo I - Máximo e Mínimo de Funções". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquinoQuanto a última passagem que você postou, perceba que:

Como você exibiu dúvidas na resolução dessa equação, eu aproveito para recomendar que você assista também a videoaula "Matemática Zero - Aula 13 - Equação do Primeiro Grau". Ela esta disponível no canal do Nerckie no YouTube:
http://www.youtube.com/nerckieEu espero que as videoaulas indicas possam lhe ajudar a tirar suas dúvidas.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por allakyhero » Dom Jul 01, 2012 11:06
LuizAquino, agradeço pela ajudá e pelos links do youtube.
Abraço!
-
allakyhero
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Jun 30, 2012 12:34
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Máximo e mínimo
por thadeu » Qua Nov 18, 2009 13:47
- 1 Respostas
- 4000 Exibições
- Última mensagem por Elcioschin

Qua Nov 18, 2009 17:50
Trigonometria
-
- [Maximo e Minimo]
por Scheu » Sex Mar 16, 2012 01:23
- 1 Respostas
- 2281 Exibições
- Última mensagem por MarceloFantini

Sex Mar 16, 2012 03:14
Cálculo: Limites, Derivadas e Integrais
-
- máximo e minimo
por brunoguim05 » Qua Mai 28, 2014 15:26
- 0 Respostas
- 1472 Exibições
- Última mensagem por brunoguim05

Qua Mai 28, 2014 15:26
Geometria Analítica
-
- Otimização - Máximo e Mínimo
por elbert005 » Dom Jun 05, 2011 20:32
- 0 Respostas
- 4624 Exibições
- Última mensagem por elbert005

Dom Jun 05, 2011 20:32
Cálculo: Limites, Derivadas e Integrais
-
- [Máximo e Mínimo] - Teoria?
por allakyhero » Dom Jul 01, 2012 13:38
- 3 Respostas
- 2244 Exibições
- Última mensagem por e8group

Dom Jul 01, 2012 16:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.