por e8group » Qua Jun 27, 2012 21:28
Prove (por indução ) a fórmula de Leibniz

, onde

e a notação

significa derivar a função

m-vezes .
Alguém sabe como provar por indução ?
Grato desde já !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qua Jun 27, 2012 23:21
Santhiago, o que você tentou? Provou o caso

?
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Qua Jun 27, 2012 23:29
Sim ,meu objetivo é provar para n = 1,2,3,4,...,n . Infelizmente não estou conseguindo agora , mas vou continuar tentando até amanha eu posto minha dificuldades .obrigado pela atenção !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Qua Jun 27, 2012 23:31
Eu perguntei se você conseguiu fazer a demonstração para

. Este é o primeiro passo para usar indução finita.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Qui Jun 28, 2012 10:15
ah ! para

sim ! , veja :
indução finita seria fazer n = (1,2,3,4,5, ..., n) ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qui Jun 28, 2012 21:41
Continuando ....
para

.
Para

. é verdadeiro .
Supondo a validade para

vamos provar para

.


Estou no caminho certo ?
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Qui Jun 28, 2012 21:43
Exercício sem resposta no livro ,não sei como que fica .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Sex Jun 29, 2012 01:31
Depois de provar para

não é necessário provar para

. Até aí você estava certo, mas quando fez a igualdade

errou, pois isto é o que você quer provar. Você deve sair de um dos lados da igualdade e chegar no outro, não assumir que é válido.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Sex Jun 29, 2012 10:24
Marcelo Fantini , obrigado pela atenção . Qualquer evolução no exercício eu posto aqui .abraços .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por brunoiria » Sex Jun 29, 2012 19:02
bom ,eu pensei em fazer assim
derivando cada termo e reagrupando

-
brunoiria
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sáb Jun 23, 2012 10:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic Mat
- Andamento: cursando
por e8group » Sáb Jun 30, 2012 09:58
brunoiria ,tudo bem ? obrigado pela solução ! Também tive esta ideia mas acho que "escapa " um pouco da expressão geral .abraços .Em breve posto minha solução .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Sáb Jun 30, 2012 10:49
Bom ,acho que agora foi !!!
Continuando ....
para

.
Propriedades
I)

(Triângulo de Pascal )
ii)
Solução :

.
Aplicando a distributividade de produto ,temos :

.
Usando propriedade ii) ,temos :

.
Usando a Relação (Stifel) ,obtemos :

.
Reagrupando o Somatório :

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Sáb Jun 30, 2012 12:00
Cuidado! Você não está multiplicando derivadas. A notação confundiu você, perceba que

. Sua primeira solução está correta.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por e8group » Sáb Jun 30, 2012 12:19
Marcelo Fantini ,mais uma vez obrigado .realmente a notação me confundiu ,entrei em contradição orá achei que

(que é verdadeiro) e que

(falso ) ,neste caso eu acredito que a solução do "brunoiria" estar correta .Vou fazer novamente o mesmo .
OBS.: Exercício trabalhoso, (talvez pelo fato de ser o primeiro exercício de indução finita que faço!) mas divertido .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Dom Jul 01, 2012 15:53
Consegui concluir para n+1 .
![\left(fg\right)^{n+1} = D\left[\sum_{i=0}^{n} \binom{n}{i} f^{n-i} g^{i} \right] \left(fg\right)^{n+1} = D\left[\sum_{i=0}^{n} \binom{n}{i} f^{n-i} g^{i} \right]](/latexrender/pictures/e3acca6a485bec6fa55359e310a710de.png)
.
Expandirmos o somatório e derivando cada termo e reagrupando ,concluímos
![\left(fg\right)^{n+1} = \sum_{i=0}^{n+1} \binom{n+1}{i} f^{n-i} g^{i} \right] \left(fg\right)^{n+1} = \sum_{i=0}^{n+1} \binom{n+1}{i} f^{n-i} g^{i} \right]](/latexrender/pictures/47d6a34c5e87329e2129e352cd41a8e9.png)
, que foi exatamente que o " brunoiria " fez acima . abraços a todos !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Indução] Prove para todo n inteiro
por +danile10 » Qua Fev 13, 2013 19:46
- 1 Respostas
- 1593 Exibições
- Última mensagem por +danile10

Qua Fev 13, 2013 20:05
Conjuntos
-
- Notação de leibniz {dúvida}
por Danilo » Sáb Abr 27, 2013 13:15
- 2 Respostas
- 2409 Exibições
- Última mensagem por Danilo

Sáb Abr 27, 2013 15:54
Cálculo: Limites, Derivadas e Integrais
-
- [hipótese da indução] Indução matemática
por leonardoandra » Sáb Out 12, 2013 22:58
- 1 Respostas
- 2498 Exibições
- Última mensagem por leonardoandra

Seg Out 14, 2013 20:10
Equações
-
- Prove: n(A X B) = n(A) * n(B)
por juliomarcos » Dom Set 14, 2008 02:58
- 3 Respostas
- 5064 Exibições
- Última mensagem por admin

Qua Set 24, 2008 05:33
Conjuntos
-
- Prove que
por Balanar » Dom Ago 29, 2010 17:22
- 1 Respostas
- 2162 Exibições
- Última mensagem por MarceloFantini

Seg Ago 30, 2010 01:24
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.