• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] Limites no "infinito " prova a existência ......

[Limites] Limites no "infinito " prova a existência ......

Mensagempor e8group » Dom Jun 17, 2012 14:37

Limites no "infinito " prova a existência de pelo menos uma raiz real ?

Considerando uma função polinomial (continua para todos reais) f definida por f(x) = \sum_{i=0}^{n} a_ix^{i} , de forma que x\to +\infty ,x\to -\infty , f(x) converge para +\infty e -\infty . Isto prova a existência de pelo menos uma raiz real ? se não ,qual seria o método ?

Obrigado !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Limites] Limites no "infinito " prova a existência ....

Mensagempor MarceloFantini » Ter Jun 19, 2012 01:34

Evite dizer que f converge para mais ou menos infinito, diga que tende a mais ou menos infinito. Como polinômios são funções contínuas, pelo teorema do valor intermediário existe algum ponto onde ele se anula. É isso.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Limites] Limites no "infinito " prova a existência ....

Mensagempor e8group » Ter Jun 19, 2012 11:20

MarceloFantini escreveu:Evite dizer que converge para mais ou menos infinito, diga que tende a mais ou menos infinito. Como polinômios são funções contínuas, pelo teorema do valor intermediário existe algum ponto onde ele se anula. É isso.


OK ! Agradeço pela atenção . Fazendo uma analogia entre as assíntotas verticais e horizontais , O que significa \lim_{x\to -\infty} f(x) = -\infty e \lim_{x\to +\infty} f(x) = +\infty ? Pergunto isso porque não vi ainda uma explicação para este comportamento ?

OBS .: Eu tenho um exercício de uma lista de limites que pede para mostra que todo polinômio de maior grau impar tem pelo menos uma raiz real (dica : ver limites no infinito ). Peço desculpas pelo erro da notação .abraços .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: