por LuizCarlos » Sex Jun 15, 2012 16:14
Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!

Estou tendo dificuldades para encontrar o m.m.c!
Tentei encontrar, achei:

. Está certo esse m.m.c.
Tem esse exercício aqui também!
Determine dois números inteiros, positivos e consecutivos, cuja soma dos inversos seja

.
Tentei resolver dessa maneira:

Encontrei m.m.c =

-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por Russman » Sex Jun 15, 2012 19:34
Bom, vou te dar uma dica q eu sempre sugiro aos meus alunos!
Na álbegra, é fato que

Ou seja, o M.M.C. dos denominadores serve para que se extraia a fração reduzida da operação. Mas se você não calcular o M.M.C. e simplismente "multiplicar em cruz" os denominadores vai estar "fazendo certo" da mesma forma.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por DanielFerreira » Sex Jun 15, 2012 20:46
LuizCarlos escreveu:Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!

Estou tendo dificuldades para encontrar o m.m.c!
Tentei encontrar, achei:

. Está certo esse m.m.c.
(4 - x) ___________ 8 ___________ x | (4 - x)
1 _______________ 8 ___________ x | 8
1 _______________ 1 ___________ x | x
1 _______________ 1 ___________ 1 |
MMC(4 - x, 8, x) =
8x(4 - x)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por DanielFerreira » Sex Jun 15, 2012 20:52
LuizCarlos escreveu:Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!
Tem esse exercício aqui também!
Determine dois números inteiros, positivos e consecutivos, cuja soma dos inversos seja

.
Tentei resolver dessa maneira:

Encontrei m.m.c =

(x + 1)___________ 12 ___________ x | (x + 1)
1 _______________ 12 ___________ x | 12
1 _______________ 1 ____________ x | x
1 _______________ 1 ___________ 1 |
MMC(x + 1, 12, x) =
12x(x + 1) Luiz Carlos,
lembre-se que o MMC entre os números primos entre si é igual ao produto entre eles, veja:
MMC(2,3,5) = 2 . 3 . 5
MMC(2,3,5) = 30
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por LuizCarlos » Sáb Jun 16, 2012 13:30
Russman escreveu:Bom, vou te dar uma dica q eu sempre sugiro aos meus alunos!
Na álbegra, é fato que

Ou seja, o M.M.C. dos denominadores serve para que se extraia a fração reduzida da operação. Mas se você não calcular o M.M.C. e simplismente "multiplicar em cruz" os denominadores vai estar "fazendo certo" da mesma forma.
Obrigado, consegui entender Russman!
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por LuizCarlos » Sáb Jun 16, 2012 13:31
danjr5 escreveu:LuizCarlos escreveu:Olá amigos do fórum, gostaria de uma ajuda nesses dois exercícios!

Estou tendo dificuldades para encontrar o m.m.c!
Tentei encontrar, achei:

. Está certo esse m.m.c.
(4 - x) ___________ 8 ___________ x | (4 - x)
1 _______________ 8 ___________ x | 8
1 _______________ 1 ___________ x | x
1 _______________ 1 ___________ 1 |
MMC(4 - x, 8, x) =
8x(4 - x)
Valeu amigo danjr5, consegui entender, não sei como consigo ficar em dúvida em m.m.c já fiz tantos exercícios desses!
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação do segundo grau
por VtinxD » Qui Jan 27, 2011 23:03
- 1 Respostas
- 3512 Exibições
- Última mensagem por douglaspezzin

Dom Jun 19, 2011 09:55
Desafios Médios
-
- Equação de segundo grau
por maria cleide » Seg Mai 09, 2011 23:46
- 3 Respostas
- 2294 Exibições
- Última mensagem por FilipeCaceres

Ter Mai 10, 2011 00:43
Sistemas de Equações
-
- Equação do segundo grau
por LuizCarlos » Qui Mai 10, 2012 13:01
- 3 Respostas
- 2328 Exibições
- Última mensagem por DanielFerreira

Sáb Mai 12, 2012 20:41
Álgebra Elementar
-
- equaçao de segundo grau
por will140592 » Dom Mar 03, 2013 11:40
- 1 Respostas
- 2149 Exibições
- Última mensagem por Russman

Dom Mar 03, 2013 19:45
Álgebra Linear
-
- equaçao de segundo grau
por will140592 » Dom Mar 03, 2013 20:21
- 1 Respostas
- 1475 Exibições
- Última mensagem por Russman

Dom Mar 03, 2013 20:43
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.