Segue o exercício: Dados os pontos A (1,1), B (5,5) e C (-1,2), determine a razão entre as áreas dos triângulos ABC e BCD, em que D é o pé da altura do triângulo ABC, traçada por C.
Bom, tentei fazer assim:
Desenhei o triângulo com os respectivos pontos. Tracei a altura que parte do vértice C em relação ao lado AB, chamando o pé da perpendicular no lado AB de D. Encontrando a equação da reta suporte do lado AB, e calculando o coeficiente angular desta reta, logo encontrando o coeficiente da reta CD e fazendo a interseção das duas eu encontro o ponto D (1/2,1/2). O triangulo ABC fica dividido em 2 triangulos BDC e DAC. Calculando o comprimento de cada lado com os pontos dados (e o ponto D que encontrei) eu consigo encontrar a área de cada triângulo e consequemente encontrar a razão. Encontrei AD =
, DC =
, BD =
. No triângulo ADC a área encontrada foi 3/4, e no BDC 27/4. Penso eu que, somando cada uma dessas áreas, encontro a área do triângulo ABC. Encontrando a area do triangulo ABC eu divido esta area por 27/4. Mas não consigo chegar na resposta. O que esotu errando?. Sei que existe uma fórmula para calcular a área do triângulo , mas se possível quero encontra-lá/resolver o exercício desta maneira. Grato a quem puder ajudar !


![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.