por Danilo » Sáb Jun 09, 2012 22:40
Pessoal, não estou conseguindo chegar na solução de um exercício.
Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.
Bom, tentei fazer assim:
Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Dom Jun 10, 2012 09:59
Danilo escreveu:Pessoal, não estou conseguindo chegar na solução de um exercício.
Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.
Bom, tentei fazer assim:
Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
A interseção entre u e t é M = (-7/6, 7/6). Refaça as suas contas a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Dom Jun 10, 2012 16:25
Nossa, uma pequena desatenção. Deu certo aqui. Valeu !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida {equação da reta}
por Danilo » Sex Jun 08, 2012 16:48
- 2 Respostas
- 2618 Exibições
- Última mensagem por Danilo

Dom Jun 10, 2012 00:02
Geometria Analítica
-
- [Dúvida reta e plano]
por Andresa_s » Qua Ago 01, 2012 13:02
- 1 Respostas
- 1606 Exibições
- Última mensagem por MarceloFantini

Qua Ago 01, 2012 21:07
Geometria Espacial
-
- EQUACAO DA RETA... DUVIDA EM QUESTOES
por jeovani » Seg Mai 16, 2011 17:37
- 2 Respostas
- 2006 Exibições
- Última mensagem por DanielRJ

Seg Mai 16, 2011 20:13
Geometria Analítica
-
- Dúvida em exercício - Equação da reta
por Danilo » Qui Mai 24, 2012 05:11
- 5 Respostas
- 3956 Exibições
- Última mensagem por Danilo

Sáb Mai 26, 2012 18:59
Geometria Analítica
-
- interseção,área e reta dúvida exercício
por igor44 » Seg Out 31, 2011 21:20
- 1 Respostas
- 2137 Exibições
- Última mensagem por procyon

Ter Nov 01, 2011 00:57
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.