• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida {equaç. da reta/condiç. de perpendicularismo}

Dúvida {equaç. da reta/condiç. de perpendicularismo}

Mensagempor Danilo » Sáb Jun 09, 2012 22:40

Pessoal, não estou conseguindo chegar na solução de um exercício.

Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.

Bom, tentei fazer assim:

Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida {equaç. da reta/condiç. de perpendicularismo}

Mensagempor LuizAquino » Dom Jun 10, 2012 09:59

Danilo escreveu:Pessoal, não estou conseguindo chegar na solução de um exercício.

Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.

Bom, tentei fazer assim:

Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !


A interseção entre u e t é M = (-7/6, 7/6). Refaça as suas contas a partir daí.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida {equaç. da reta/condiç. de perpendicularismo}

Mensagempor Danilo » Dom Jun 10, 2012 16:25

Nossa, uma pequena desatenção. Deu certo aqui. Valeu !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}