por menezesandrew » Sex Mar 20, 2009 21:32
essa questão estou com dificuldades...
Usando uma vez a letra A, uma vez a letra B e n-2 vezes a letra C,
podemos formar 20 anagramas diferentes com n letras em cada anagrama.
Encontre o valor n.
-
menezesandrew
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Mar 20, 2009 21:12
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: ensino medio
- Andamento: cursando
por Molina » Ter Mar 31, 2009 20:14
boa noite, menezes.
vamos fazer a seguinte analise:
caso haja 1 A, 1 B e 1 C. Assim temos os seguintes anagramas:
ABC
ACB
BAC
BCA
CAB
CBA
ou seja, 6 anagramas.
caso haja 1 A, 1 B e 2 C. Assim temos os seguintes anagramas:
ABCC
ACBC
ACCB
BACC
BCAC
BCCA
CABC
CBAC
CACB
CBCA
CCAB
CCBA

ou seja, 12 anagramas.
podemos entao generalizar para

![\frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20 \Rightarrow {n}^{2}-n-20=0 \frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20 \Rightarrow {n}^{2}-n-20=0](/latexrender/pictures/9a46f33e18a997cb32af75b4532468d3.png)

e

como n-2 tem que ser positivo,

abraços.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por bmachado » Sex Jun 08, 2012 00:17
Boa noite,
Alguem pode me explicar essa resolucao, pois, n entendi pq n! passou a n(n-1)(n-2) desculpe a ignorancia.Obrigado
Molina escreveu:boa noite, menezes.
vamos fazer a seguinte analise:
caso haja 1 A, 1 B e 1 C. Assim temos os seguintes anagramas:
ABC
ACB
BAC
BCA
CAB
CBA
ou seja, 6 anagramas.
caso haja 1 A, 1 B e 2 C. Assim temos os seguintes anagramas:
ABCC
ACBC
ACCB
BACC
BCAC
BCCA
CABC
CBAC
CACB
CBCA
CCAB
CCBA

ou seja, 12 anagramas.
podemos entao generalizar para

![\frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20 \Rightarrow {n}^{2}-n-20=0 \frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20 \Rightarrow {n}^{2}-n-20=0](/latexrender/pictures/9a46f33e18a997cb32af75b4532468d3.png)

e

como n-2 tem que ser positivo,

abraços.

-
bmachado
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Qua Fev 29, 2012 00:28
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: EF
- Andamento: formado
por Molina » Sáb Jun 09, 2012 14:15
Boa tarde,
Machado.
bmachado escreveu:Boa noite,
Alguem pode me explicar essa resolucao, pois, n entendi pq n! passou a n(n-1)(n-2) desculpe a ignorancia.Obrigado
Molina escreveu:boa noite, menezes.
vamos fazer a seguinte analise:
caso haja 1 A, 1 B e 1 C. Assim temos os seguintes anagramas:
ABC
ACB
BAC
BCA
CAB
CBA
ou seja, 6 anagramas.
caso haja 1 A, 1 B e 2 C. Assim temos os seguintes anagramas:
ABCC
ACBC
ACCB
BACC
BCAC
BCCA
CABC
CBAC
CACB
CBCA
CCAB
CCBA

ou seja, 12 anagramas.
podemos entao generalizar para

![\frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20 \Rightarrow {n}^{2}-n-20=0 \frac{[1+1+(n-2)]!}{(n-2)!}=20 \Rightarrow \frac{n!}{(n-2)!}=20 \Rightarrow \frac{n*(n-1)*(n-2)!}{(n-2)!}=20 \Rightarrow {n}^{2}-n-20=0](/latexrender/pictures/9a46f33e18a997cb32af75b4532468d3.png)

e

como n-2 tem que ser positivo,

abraços.

Respondendo sua dúvida, eu fiz

para simplificar com o termo do denominador que era

.
E usei este artifício pela definição de fatorial, já que é uma sucessão de multiplicação pelo seus antecessores. O antecessor de

é

; o antecessor de

é

e assim sucessivamente...
Qualquer dúvida avise.

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (( Analise combinatória ))
por Roberta » Dom Jul 13, 2008 17:28
- 8 Respostas
- 16079 Exibições
- Última mensagem por Aparecida

Sáb Mai 05, 2012 00:07
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:20
- 4 Respostas
- 12320 Exibições
- Última mensagem por Neilson

Ter Mai 01, 2012 01:23
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Sex Set 12, 2008 23:26
- 2 Respostas
- 8315 Exibições
- Última mensagem por Rejane Sampaio

Seg Set 15, 2008 10:08
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 15:52
- 3 Respostas
- 7755 Exibições
- Última mensagem por Rejane Sampaio

Qui Set 25, 2008 10:43
Estatística
-
- Análise Combinatória
por Rejane Sampaio » Qua Set 17, 2008 15:56
- 2 Respostas
- 6492 Exibições
- Última mensagem por Rejane Sampaio

Seg Set 22, 2008 11:27
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.