• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida em exercício - raízes de função quadrática

Dúvida em exercício - raízes de função quadrática

Mensagempor Danilo » Qui Jun 07, 2012 01:50

Pessoal, tenho uma noção de como resolver o exercício. Mas estou em dúvida no processo da resolução.

Dadas as equações x²-5x+k = 0 e x²-7x+2k = 0 , sabe-se que uma das raízes da segunda equação é o dobro de uma das raízes da primeira equação.Sendo k diferente de 0, determine k .

Bom, sei que, se eu resolver o sistema

r+s=5
r+2s=-7



eu encontro cada raiz e as multiplico entre si e encontro o valor de k. Por que mulplicando a raizes obtemos o valor de k? Outra coisa: penso eu, se são duas equações diferentes penso eu que cada equação têm que ter sua propria variavel. Não entendo por que existe r em uma equação e o mesmo r na outra equação. Para s tudo bem que no problema foi dado que uma raiz é o dobro da outra, mas não entendo porque quem resolveu assumiu uma mesma raiz para as duas equações. Agradeço a quem puder me dar uma luz!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida em exercício - raízes de função quadrática

Mensagempor Russman » Qui Jun 07, 2012 03:32

Na 1° equação, isto é, em x²-5x+k=0, sejam w e q suas raízes. Assim, temos o sistema

w + q = 5 (i)
w.q = k (ii)

Na 2° equação, isto é, em x² - 7x + 2k = 0, sejam r e s suas raízes. Assim, temos

r+s = 7(iii)
r.s = 2k (iv)

Suponhamos agora que r = 2w. Então temos, no segundo sistema

2w + s = 7 (v)
w.s = k (vi)

Compare agora a equação (ii) com a (vi). Se w e k são diferentes de zero, então w.q = k e w.s = k somente se s=q .

Portanto, aplicando esse resultado na equação (i) e tomando a equação (v), obtemos o seguinte sistema

w+s = 5
2w + s = 7

de onde w=2 e s=3 e , consequentemente, q=3 e r = 4. Logo, k = 6.

Veja qua aplicando nas equações k=6 obtemos para a primeira a solução S={2,3} e para a segunda S = {3,4}. Veja que os resultado confirmam que uma das raízes é igual a outra e que a outra é o dobro de uma.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}