• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Eq Dif] Variação dos Parâmetros

[Eq Dif] Variação dos Parâmetros

Mensagempor Bruno G Carneiro » Qua Jun 06, 2012 16:08

Equações Diferenciais - Boyce e DiPrima
Capítulo 3.7 - Exercício 9

Encontre a solução geral da equação diferencial dada.

4y'' + y = 2 sec(t/2)

Comecei dividindo a equação por 4

y'' + 1/4y = 1/2 sec(t/2)

Em seguida, busquei as soluções linearmente independentes da equação homogênea associada

r^2 + 1/4 r = 0
r = 0 , r = -1/4

Que levaria as soluções

y_1 = e^{0t} = 1 ,  y_2 = e^{-t/4}

No entanto, a resposta do livro para a solução geral é: y = c_1cos(t/2) + c_2sen(t/2) + tsen(t/1) + 2[ln cos(t/2)]cos(t/2)

Observando a resposta do livro, sou levado a pensar que as soluções linearmente independentes deveria ser as funções que multiplicam c_1 e c_2, ou seja, cos(t/2) e sen(t/2).

Bem diferente de y_1 e y_2 que eu encontrei.

O que há de errado?
Bruno G Carneiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 11, 2012 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Eq Dif] Variação dos Parâmetros

Mensagempor nietzsche » Qua Jun 06, 2012 22:03

Bruno G Carneiro,

Você errou na conta. Quando você foi resolver a homogênea, y'' + 1/4y = 0, vc supôs uma solução do tipo y = exp(r*t), e obteve a equação: r² + 1/4 r = 0. Era pra ser, r² + 1/4 = 0, visto que não tem o termo do y'.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}