• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Eq Dif] Variação dos Parâmetros

[Eq Dif] Variação dos Parâmetros

Mensagempor Bruno G Carneiro » Qua Jun 06, 2012 16:08

Equações Diferenciais - Boyce e DiPrima
Capítulo 3.7 - Exercício 9

Encontre a solução geral da equação diferencial dada.

4y'' + y = 2 sec(t/2)

Comecei dividindo a equação por 4

y'' + 1/4y = 1/2 sec(t/2)

Em seguida, busquei as soluções linearmente independentes da equação homogênea associada

r^2 + 1/4 r = 0
r = 0 , r = -1/4

Que levaria as soluções

y_1 = e^{0t} = 1 ,  y_2 = e^{-t/4}

No entanto, a resposta do livro para a solução geral é: y = c_1cos(t/2) + c_2sen(t/2) + tsen(t/1) + 2[ln cos(t/2)]cos(t/2)

Observando a resposta do livro, sou levado a pensar que as soluções linearmente independentes deveria ser as funções que multiplicam c_1 e c_2, ou seja, cos(t/2) e sen(t/2).

Bem diferente de y_1 e y_2 que eu encontrei.

O que há de errado?
Bruno G Carneiro
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Sex Mai 11, 2012 15:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Eq Dif] Variação dos Parâmetros

Mensagempor nietzsche » Qua Jun 06, 2012 22:03

Bruno G Carneiro,

Você errou na conta. Quando você foi resolver a homogênea, y'' + 1/4y = 0, vc supôs uma solução do tipo y = exp(r*t), e obteve a equação: r² + 1/4 r = 0. Era pra ser, r² + 1/4 = 0, visto que não tem o termo do y'.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.