• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Duvida - Geometria Plana

Duvida - Geometria Plana

Mensagempor Luiz Felipe » Ter Jun 05, 2012 21:32

Questão : Um marceneiro cortou uma tabua retangular de 75 cm de comprimento por 20 cm de largura , separando-a em dois trapezios congruentes.Sabendo-se que o comprimento do corte foi de 25 cm, calcule a medida da base menor de um dos trapézios.

edaasaas.JPG
FIGURA
edaasaas.JPG (3.7 KiB) Exibido 2810 vezes


RESP: 30CM

Tentativa : eu peguei a base menor do trapezio e formei um triângulo retangulo, (largura-cateto oposto 20cm, corte-hipotenusa 25cm, base menor "x"), tentei usa um Pitagoras, mas não bateu com a resposta, segue a resolução :

{a}^{2}={b}^{2}+{c}^{2}

{25}^{2}={20}^{2}+{x}^{2}

625 = 400 + {x}^{2}

{x}^{2}=225

x = \sqrt[2]{225}

x =15

Agradeço a atenção, o tempo e a ajuda de quem se dispor, obrigado.
Luiz Felipe
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Seg Fev 13, 2012 15:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Ciências Biologicas
Andamento: cursando

Re: Duvida - Geometria Plana

Mensagempor MarceloFantini » Qua Jun 06, 2012 02:28

Sua resolução está incompleta. Veja a figura anexada para entender melhor. O que você fez foi encontrar o tamanho do cateto restante. Agora, sabemos que tudo vale 15, logo este pedaço debaixo vale y-15. Como temos um retângulo, o lado de cima é igual ao lado debaixo, daí x=y-15, e também sabemos x+y=75. Isolando y em função de x, segue y=x+15 e x+y=x+x+15=2x+15=75, finalmente x=30.
Anexos
geometria.png
Desenho auxiliar
geometria.png (3.3 KiB) Exibido 2806 vezes
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Duvida - Geometria Plana

Mensagempor Pandaludo » Ter Ago 06, 2013 17:31

Professor, MarceloFantini , por que o senhor disse que aqueles lados eram iguais, se no texto isto não estava explícito? Refiro-me ao x. Obrigada.
Pandaludo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Ago 06, 2013 17:26
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Plana

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}