• Anúncio Global
    Respostas
    Exibições
    Última mensagem

probabilidade

probabilidade

Mensagempor debeta56 » Dom Jun 03, 2012 11:39

Suponha que A e B são eventos com P(A) = 1/3, P(B) = 1/4 e P(A intersecção B) = 1/10. Determine:
a) P(A\B) (probabilidade do evento A assumindo que o evento B ocorreu)
b) P(B\A) (probabilidade do evento B assumindo que o evento A ocorreu)
c) P(A elevado c\B ) (probabilidade do evento A complementar assumindo que o evento B ocorreu)
d) P(A elevado a c\B elevado a c) probabilidade do evento A complementar assumindo que o evento B complementar ocorreu)
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: probabilidade

Mensagempor joaofonseca » Dom Jun 03, 2012 14:16

Primeira conclusão do enunciado é que os acontecimentos A e B não são independentes pois:

P(A) \cdot P(B)\neq P(A \cap B)

Deduzo que você já estudou a formula da probabilidade condicional:

P(A|B)=\frac{P(A \cap B)}{P(B)}

Pistas:

P(A)=P(A \cap B)+P(A \cap \bar{B})

P(\bar{A} \cap \bar{B})=1-P(A \cup B)

P(A \cup B)=P(A)+P(B)-P(A \cap B)
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: probabilidade

Mensagempor debeta56 » Dom Jun 03, 2012 14:47

Obrigado João isto eu sei mas infelizmente no forum em que estou não se tem liberdade de perguntar nada e felizmente aqui, em forum independentes pode-se ver aonde estou errando. Abraços.
debeta56
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Ter Mai 01, 2012 09:37
Formação Escolar: PÓS-GRADUAÇÃO
Andamento: cursando

Re: probabilidade

Mensagempor nandabhz » Dom Jun 03, 2012 16:48

To em duvida nestas 3 questoes de estatisticas abaixo. Alguem poderia me ajudar a resolver? Já coloquei as respostas, porem nao consegui desenvolve-las. Desde já agradeço.

1- As vendas diárias de uma lanchonete seguem uma distribuição normal, com média de R$400,00 e desvio padrão igual a R$ 100,00. Calcule a probabilidade de que em um determinado dia o faturamento da lanchonete esteja entre R$ 380,00 e R$500,00. Resposta 42,06

2-Uma grande revista de negócios brasileira afirmou que o faturamento das indústrias de uma determinada região do país seria igual a R$820.000,00. Sabe-se que o desvio padrão populacional de todas as empresas desta região é igual a R$120.000,00. Um pesquisador independente analisou os dados de uma amostra formada por 19 empresas desta região, encontrando um faturamento médio de R$750.000,00. Assumindo nível confiança de 95% (Ztab=±1,96), é possível concordar com a alegação feita pela revista? Resposta: Como Ztab= ± 1,96 (95% deconfiança), o valor de Zcalc= -2,54 não pertence ao intervalo da Ho (-1,96<zcalc < 1,96), portanto está localizado na região de rejeição (RR) que indica a
hipótese nula (Ho) deve ser rejeitada e, assim deverá ser aceita a H1 (? ? R$820.000,00). Assim é possível supor com base nas informações da amostra que a alegação feita pela revista não seja verdadeira.

3-Uma empresa que comercializa banco de dados com informações sobre assinantes de jornais e revistas assegura que a renda média dos assinantes é de, no mínimo, R$850,00. Uma amostra aleatória com 24 pessoas revelou uma média mensal igual à R$ 800,00, com desvio padrão amostral de R$200,00. Estatisticamente é possível concordar com a alegação da empresa? Assuma um nível de confiança de 95%.( dado: ztab = 1,96). Resposta Resposta: tcalc=-1,22, Como ttab= ± 2,064 (95% de confiança – Tabela ANEXO; n-1=23), o valor de tcalc= - 1,22, está localizado está no intervalo delimitado pelos valores tabelados (-2,064< tcalc<+2,064) ,ou seja, está localizado na região de aceitação de Ho indicando que a renda média dos assinantes é de, no mínimo, R$850,00.
nandabhz
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Jun 03, 2012 13:41
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: adm
Andamento: cursando

Re: probabilidade

Mensagempor joaofonseca » Seg Jun 04, 2012 11:02

nandabhz escreveu:To em duvida nestas 3 questoes de estatisticas abaixo. Alguem poderia me ajudar a resolver? Já coloquei as respostas, porem nao consegui desenvolve-las.


nandabhz ,se não abrires um novo tópico por cada pergunta vais continuar em dúvida, pois ninguém vai responder!
Mesmo que abrás um novo tópico, terás que te esforçar mais do que fazer copy+paste das perguntas, para alguém dar alguma atenção.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?