• Anúncio Global
    Respostas
    Exibições
    Última mensagem

segunda derivada problema na hora de igualar a zero

segunda derivada problema na hora de igualar a zero

Mensagempor nayra suelen » Qui Mai 31, 2012 15:05

ontem fiz um teste cuja tinha uma questao mais ou menos assim que era pra derivar a funcaçoa f(x):3xelevado a 4 +4x³-12x²+2 e pedia pra verificar se tinha pontos criticos ,o maximo e minimo local ,onde era crescente e decrescente e depois verificar onde tinha concavidade pra cima pra baixo e ponto de inflexao

tive o problema na derivada segunda
uma vez q a derivada primeira seria:
12x³+12x²-24x

a segunda seria :
36x²+24x-24
pra igualar a zero
ficaria 36x²+24x-24=0
e teria q usar a formula de bascara
soq ao usar nao deu uma raiz quadrada exata memso se eu simplificasse a equaçao dividindo tudo por 12 antes de aplicar bascara
ficou assim :
-24+- raiz quadrada de 4032 / 72 isso sem simplificar
queria saber como deveria fazer essa derivada igualando a zero pq dps cabei usando o valor aproximado da raiz quadrada mas achoq nao esta certo


a minah duvida era oq eu poderia ter feito
porque o professor dara vista so semana q vem mas queria tirar essa duvida
nayra suelen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Mai 27, 2012 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: ciências farmacêuticas
Andamento: cursando

Re: segunda derivada problema na hora de igualar a zero

Mensagempor Russman » Qui Mai 31, 2012 22:19

Você esta fazendo certo!

Os pontos críticos da função ocorrem quando a primeira derivada se anula.
A função é crescente no intervalo que a 1° derivada é maior que zero.
A função é decrescente no intervalo que a 1° derivada é menor que zero.
A função muda de concavidade nos pontos em que a 2° derivada se anula.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: segunda derivada problema na hora de igualar a zero

Mensagempor nayra suelen » Sex Jun 01, 2012 12:00

mas a minha duvida é q ue eu nao consegui anular a segunda derivada
porque usaria a formula de bascara sóq nao da raiz exata
ficaria assim:

foi ate onde cheguei

f''(x):36x²+24x-24
isso = -24 +- raiz quadrada de 4032/72 soq nao tem raiz de 4032 daria +-63,49/72

entao nao sei se seria correto usar isso e dps aplicar nos pontos
nayra suelen
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Mai 27, 2012 19:28
Formação Escolar: GRADUAÇÃO
Área/Curso: ciências farmacêuticas
Andamento: cursando

Re: segunda derivada problema na hora de igualar a zero

Mensagempor MarceloFantini » Sex Jun 01, 2012 14:25

As raízes não são estas, e não há nada de errado em não encontrar respostas numericamente inteiras ou racionais. Seu método está correto. Nayra, da próxima vez procure usar LaTeX para digitar suas fórmulas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.