• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geometria espacial

Seção para postagens de problemas matemáticos do cotidiano, reportagens, casos interessantes, polêmicos ou curiosos.
Regras do fórum

  1. Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!

    Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.

    Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;



  2. Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".


    Bons estudos!

geometria espacial

Mensagempor Gir » Seg Jul 27, 2009 11:46

O volume de um prisma regular de base quadrada é 700 cm³.O perimetro da base é de 40 cm.Calcule a altura e a área total do prisma.


40/2=20
A=l²
l²=20

V=Bh
700=40.h
h=35/2 cm


?

me ajudem!
700=40.h
Gir
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jul 02, 2009 17:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: geometria espacial

Mensagempor Molina » Seg Jul 27, 2009 15:35

Boa tarde, Gir.

Como a base é um quadrado e tem perímetro igual a 40cm, cada lado possui 10cm.

Utilizando os dados que temos agora, vamos calcular a altura do prisma:

V={A}_{b}*h [volume é igual área da base vezes altura]

700 cm^3=(10cm * 10cm) * h

700cm^3=100cm^2*h

h=\frac{700cm^3}{100cm^2}=7cm

Agora pra descobrir a área total, você pode fazer um esboço deste prisma e "abri-lo" totalmente, de forma a deixa-lo no plano. E calcular cada área das figuras encontradas e soma-las.

Lembre-se que teremos dois quadrados de 10cm de lado cada que são as bases do prisma; e quatro retângulos de 10cm x 7cm cada que são os lados do prisma.

Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: geometria espacial

Mensagempor Gir » Ter Jul 28, 2009 13:36

obrigada!

A diagonal de um paralelepípedo reto retangular mede 20 raiz de 2 cm.As dimensoes desse paralelepípedo sao proporcionais aos numeros 5,4 e 3,respectivamente.Calcule as dimensoes desse paralelepipedo.(Faça a/5=b/4=c/3=k --> a=5k,b=4k,c=3k)


20 raiz de 2=raiz de (5k)²+(4k)²+(3k)²
.
.
.
k=5 raiz de 2/3

??
Gir
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Qui Jul 02, 2009 17:18
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: geometria espacial

Mensagempor Molina » Ter Jul 28, 2009 15:21

Gir escreveu:obrigada!

A diagonal de um paralelepípedo reto retangular mede 20 raiz de 2 cm.As dimensoes desse paralelepípedo sao proporcionais aos numeros 5,4 e 3,respectivamente.Calcule as dimensoes desse paralelepipedo.(Faça a/5=b/4=c/3=k --> a=5k,b=4k,c=3k)


20 raiz de 2=raiz de (5k)²+(4k)²+(3k)²
.
.
.
k=5 raiz de 2/3

??

Boa tarde, Gir.

Procure enunciar uma questão por tópico. Assim, outro usuário que tiver a mesma dúvida que você irá encontrá-la com mais facilidade..

Sobre a questão você precisa saber a fórmula da diagonal do paralelepípedo, que é:

{d}_{p}=\sqrt{a^2+b^2+c^2} , onde a, b e c são os lados do paralelepípedo.
Desta forma:

{d}_{p}=\sqrt{a^2+b^2+c^2}
20\sqrt{2}=\sqrt{(5k)^2+(4k)^2+(3k)^2}

elevando ao quadrado de ambos os lados:

800=(5k)^2+(4k)^2+(3k)^2
800=25k^2+16k^2+9k^2
800=50k^2
k^2=\frac{800}{50}
k^2=16
k=4 (lembrando que k = -4 é descartado)

Com isso temos que as dimensões são:

5k, 4k e 3k => 5*4, 4*4 e 3*4 => 20, 16 e 12.


Bom estudo, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Problemas do Cotidiano

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?