Seção para postagens de problemas matemáticos do cotidiano, reportagens, casos interessantes, polêmicos ou curiosos.
Regras do fórum
- Não envie somente enunciados de problemas, informe suas tentativas e dificuldades!
Queremos que a "ajuda" represente um trabalho interativo, pois saber especificar a dúvida exige estudo.
Serão desconsiderados tópicos apenas com enunciados, sem interação. Nosso objetivo não é resolver listas de exercícios;
- Para não haver má interpretação em suas postagens, especialmente na precedência das operações, utilize LaTeX, podendo ser a partir do botão "editor de fórmulas".
Bons estudos!
por Gir » Seg Jul 27, 2009 11:46
O volume de um prisma regular de base quadrada é 700 cm³.O perimetro da base é de 40 cm.Calcule a altura e a área total do prisma.
40/2=20
A=l²
l²=20
V=Bh
700=40.h
h=35/2 cm
?
me ajudem!
700=40.h
-
Gir
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jul 02, 2009 17:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Seg Jul 27, 2009 15:35
Boa tarde, Gir.
Como a base é um quadrado e tem perímetro igual a 40cm, cada lado possui 10cm.
Utilizando os dados que temos agora, vamos calcular a altura do prisma:

[volume é igual área da base vezes altura]



Agora pra descobrir a área total, você pode fazer um esboço deste prisma e "abri-lo" totalmente, de forma a deixa-lo no plano. E calcular cada área das figuras encontradas e soma-las.
Lembre-se que teremos
dois quadrados de 10cm de lado cada que são as bases do prisma; e
quatro retângulos de 10cm x 7cm cada que são os lados do prisma.
Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Gir » Ter Jul 28, 2009 13:36
obrigada!
A diagonal de um paralelepípedo reto retangular mede 20 raiz de 2 cm.As dimensoes desse paralelepípedo sao proporcionais aos numeros 5,4 e 3,respectivamente.Calcule as dimensoes desse paralelepipedo.(Faça a/5=b/4=c/3=k --> a=5k,b=4k,c=3k)
20 raiz de 2=raiz de (5k)²+(4k)²+(3k)²
.
.
.
k=5 raiz de 2/3
??
-
Gir
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jul 02, 2009 17:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Ter Jul 28, 2009 15:21
Gir escreveu:obrigada!
A diagonal de um paralelepípedo reto retangular mede 20 raiz de 2 cm.As dimensoes desse paralelepípedo sao proporcionais aos numeros 5,4 e 3,respectivamente.Calcule as dimensoes desse paralelepipedo.(Faça a/5=b/4=c/3=k --> a=5k,b=4k,c=3k)
20 raiz de 2=raiz de (5k)²+(4k)²+(3k)²
.
.
.
k=5 raiz de 2/3
??
Boa tarde, Gir.
Procure enunciar uma questão por tópico. Assim, outro usuário que tiver a mesma dúvida que você irá encontrá-la com mais facilidade..
Sobre a questão você precisa saber a fórmula da diagonal do paralelepípedo, que é:

, onde
a,
b e
c são os lados do paralelepípedo.
Desta forma:


elevando ao quadrado de ambos os lados:






(lembrando que k = -4 é descartado)
Com isso temos que as dimensões são:
5k, 4k e 3k => 5*4, 4*4 e 3*4 => 20, 16 e 12.Bom estudo,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
Voltar para Problemas do Cotidiano
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Geometria espacial
por nathy vieira » Qua Out 07, 2009 22:37
- 2 Respostas
- 2840 Exibições
- Última mensagem por nathy vieira

Qua Out 07, 2009 23:03
Geometria Espacial
-
- geometria espacial
por nathy vieira » Qua Out 07, 2009 23:18
- 4 Respostas
- 6138 Exibições
- Última mensagem por nathy vieira

Qui Out 08, 2009 18:37
Geometria Espacial
-
- Geometria espacial
por crixprof » Qui Out 15, 2009 10:40
- 2 Respostas
- 3152 Exibições
- Última mensagem por crixprof

Sex Out 16, 2009 18:27
Geometria Espacial
-
- Geometria Espacial
por geriane » Sáb Abr 03, 2010 10:39
- 4 Respostas
- 4198 Exibições
- Última mensagem por geriane

Dom Abr 04, 2010 10:29
Geometria Espacial
-
- Geometria espacial
por nayara michele » Ter Set 27, 2011 17:43
- 1 Respostas
- 2390 Exibições
- Última mensagem por Neperiano

Ter Set 27, 2011 18:02
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.