• Anúncio Global
    Respostas
    Exibições
    Última mensagem

N° Complexos - Conjugado

N° Complexos - Conjugado

Mensagempor iceman » Seg Mai 28, 2012 19:52

Determine o conjugado do número complexo z=\frac2{i}+\frac1{i-1}

Não consigo resolver, ajuda aí?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: N° Complexos - Conjugado

Mensagempor Russman » Seg Mai 28, 2012 20:57

É so trocar i por -i.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: N° Complexos - Conjugado

Mensagempor iceman » Seg Mai 28, 2012 21:06

Russman escreveu:É so trocar i por -i.


Mas qual é o calculo? não sei fazer. Ajuda?
iceman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 70
Registrado em: Qui Mai 10, 2012 18:35
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: N° Complexos - Conjugado

Mensagempor joaofonseca » Qua Mai 30, 2012 15:54

Russman escreveu:É so trocar i por -i.


Não me parece!Primeiro é necessário colocar z na forma a+bi.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: N° Complexos - Conjugado

Mensagempor Molina » Qua Mai 30, 2012 16:16

Boa tarde.

O que Russman quis dizer é que \frac{1}{i}= -i


Tente agora...



:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: N° Complexos - Conjugado

Mensagempor Russman » Qua Mai 30, 2012 16:36

Molina escreveu:Boa tarde.

O que Russman quis dizer é que \frac{1}{i}= -i


Tente agora...



:y:


Sim, escreve o número na forma normal e onde aparece i troca-se por -i.


Veja que, colocando z na forma Normal, isto é z=a + bi, temos

z=\frac2{i}+\frac1{i-1}\Rightarrow \frac{2i-2 + i}{{i}^{2}-i} = \frac{i-2}{-1-i}.\frac{-1+i}{-1+i} = \frac{-i-1+2-2i}{1-{i}^{2}} =  \frac{1-3i}{2} = \frac{1}{2} - i\frac{3}{2}.

Portanto o conjugado é

\overline{z} =  \frac{1}{2} + i\frac{3}{2}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: N° Complexos - Conjugado

Mensagempor joaofonseca » Qua Mai 30, 2012 17:15

Parece que houve um erro nesses calculos, antes da multiplicação pelo conjugado do denominador
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.