• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Ponto máximo de uma função]- Pressão sanguínea.

[Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor alicemneves » Seg Mai 28, 2012 00:20

Suponha que a diminuição na pressão sanguínea de uma pessoa dependa de uma determinada droga que ela deverá tomar. Assim, se x mg da droga forem tomados, a queda na pressão sanguínea será uma função de x. Seja f(x) esta função:

f (x) = 1/2 x² (k - x)

onde x está em [0, k] e k é uma constante positiva; Determine o valor de x que cause o maior decréscimo na pressão sanguínea.

Resolução:

Para resolver este problema, sei que o ponto máximo da função deve ser encontrado, para isso devemos derivar essa função e depois igualar à zero.

Mas não estou conseguindo fazer a derivada!
alicemneves
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 27, 2012 23:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: cursando

Re: [Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor LuizAquino » Seg Mai 28, 2012 18:05

alicemneves escreveu:Suponha que a diminuição na pressão sanguínea de uma pessoa dependa de uma determinada droga que ela deverá tomar. Assim, se x mg da droga forem tomados, a queda na pressão sanguínea será uma função de x. Seja f(x) esta função:

f (x) = 1/2 x² (k - x)

onde x está em [0, k] e k é uma constante positiva; Determine o valor de x que cause o maior decréscimo na pressão sanguínea.


alicemneves escreveu:Resolução:

Para resolver este problema, sei que o ponto máximo da função deve ser encontrado, para isso devemos derivar essa função e depois igualar à zero.


Ok.

alicemneves escreveu:Mas não estou conseguindo fazer a derivada!


Qual foi exatamente a sua dúvida no cálculo da derivada? Por favor, envie sua tentativa para que possamos corrigi-la.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor alicemneves » Seg Mai 28, 2012 19:03

Acho que deve ser usada a regra do produto, certo?
Mas não tenho ideia de como calcular a derivada de (k -x)
alicemneves
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 27, 2012 23:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: cursando

Re: [Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor Russman » Seg Mai 28, 2012 19:11

alicemneves escreveu:
f (x) = 1/2 x² (k - x)


Não entendo como que os termos se relacionam nessa função. A função é 1 sobre o produto x²(k-x)? Ou um meio que multiplica o produto...? Ou...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor alicemneves » Seg Mai 28, 2012 19:17

A função é um meio de x², multiplicado por (k-x)
alicemneves
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 27, 2012 23:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: cursando

Re: [Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor Russman » Seg Mai 28, 2012 20:42

Eu vejo duas formas de fazer: regra do produto ou expansão.

Eu sugiro a expansão! Veja, que a sua função

f(x)=\frac{1}{2}{x}^{2}(k-x)

pode ser escrita como

f(x)=\frac{1}{2}{x}^{2}k - \frac{1}{2}{x}^{3}

Assim, sua derivada é

f'(x)=xk - \frac{3}{2}{x}^{2}

que se anula em x=0 ou x=\frac{2}{3}k .
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor alicemneves » Qui Mai 31, 2012 12:07

Consegui calcular

Mas como você chegou nestes valores de x?
alicemneves
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Mai 27, 2012 23:45
Formação Escolar: GRADUAÇÃO
Área/Curso: Biologia
Andamento: cursando

Re: [Ponto máximo de uma função]- Pressão sanguínea.

Mensagempor Russman » Qui Mai 31, 2012 22:58

É só calcular as raízes da equação!

f'(x)=xk - \frac{3}{2}{x}^{2} \Rightarrow f'(x) =  x(k - \frac{3}{2}x)

f'(x) =  0 \Rightarrow x(k - \frac{3}{2}x)=0 \Rightarrow x=0 , x=\frac{2k}{3}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.