• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função do 2° grau - o menor valor numa expressão

Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sex Mai 25, 2012 22:24

Considere x,y \in \Re tais que 3x - y = 20. O menor valor de \sqrt{x^2 + y^2} é:

a) 2\sqrt{5}

b) 2\sqrt{10}

c) 2\sqrt{15}

d) 4\sqrt{5}

e) 4\sqrt{10}

Resposta: Alternativa b)

* Bom, aqui está o que eu tentei fazer, mas obviamente não fechou com o resultado:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{144-160}{4};

yv = 4;

Raiz de 4 é 2. Não fecha com nenhuma das alternativas. Alguém pode me indicar o caminho certo? Qual seria o menor valor assumido pelo expressão na raiz?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sáb Mai 26, 2012 16:09

Ops, pessoal, foi mal. Cometi um ridículo equívoco com relação ao cálculo do yv na equação do 2° grau.

Simplifiquei a equação 10x^2-120x+400 para x^2-12x+40, e daí calculei o yv. Não sei porque fiz isso...

Me desculpem pela distração! :$

Resolução correta:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{14400-16000}{-40}

yv = 40;

Raiz de 40 é 2\sqrt{10} . Alternativa b)
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.