• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função do 2° grau - o menor valor numa expressão

Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sex Mai 25, 2012 22:24

Considere x,y \in \Re tais que 3x - y = 20. O menor valor de \sqrt{x^2 + y^2} é:

a) 2\sqrt{5}

b) 2\sqrt{10}

c) 2\sqrt{15}

d) 4\sqrt{5}

e) 4\sqrt{10}

Resposta: Alternativa b)

* Bom, aqui está o que eu tentei fazer, mas obviamente não fechou com o resultado:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{144-160}{4};

yv = 4;

Raiz de 4 é 2. Não fecha com nenhuma das alternativas. Alguém pode me indicar o caminho certo? Qual seria o menor valor assumido pelo expressão na raiz?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sáb Mai 26, 2012 16:09

Ops, pessoal, foi mal. Cometi um ridículo equívoco com relação ao cálculo do yv na equação do 2° grau.

Simplifiquei a equação 10x^2-120x+400 para x^2-12x+40, e daí calculei o yv. Não sei porque fiz isso...

Me desculpem pela distração! :$

Resolução correta:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{14400-16000}{-40}

yv = 40;

Raiz de 40 é 2\sqrt{10} . Alternativa b)
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}