• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função do 2° grau - o menor valor numa expressão

Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sex Mai 25, 2012 22:24

Considere x,y \in \Re tais que 3x - y = 20. O menor valor de \sqrt{x^2 + y^2} é:

a) 2\sqrt{5}

b) 2\sqrt{10}

c) 2\sqrt{15}

d) 4\sqrt{5}

e) 4\sqrt{10}

Resposta: Alternativa b)

* Bom, aqui está o que eu tentei fazer, mas obviamente não fechou com o resultado:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{144-160}{4};

yv = 4;

Raiz de 4 é 2. Não fecha com nenhuma das alternativas. Alguém pode me indicar o caminho certo? Qual seria o menor valor assumido pelo expressão na raiz?
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função do 2° grau - o menor valor numa expressão

Mensagempor PeterHiggs » Sáb Mai 26, 2012 16:09

Ops, pessoal, foi mal. Cometi um ridículo equívoco com relação ao cálculo do yv na equação do 2° grau.

Simplifiquei a equação 10x^2-120x+400 para x^2-12x+40, e daí calculei o yv. Não sei porque fiz isso...

Me desculpem pela distração! :$

Resolução correta:

3x - y = 20
y = 3x - 20;

Substituindo na raiz:
\sqrt{x^2+y^2}

\sqrt{x^2+(3x-20)^2}

\sqrt{10x^2-120x+400}

O valor sob a raiz sera o menor possível no vértice da parábola descrita pela função 10x^2-120x+400, já que o coeficiente de x^2 é positivo (ou seja, concavidade pra cima, e valor mínimo).

yv = \frac{-\Delta}{4a};

yv = \frac{-b^2+4ac}{4a};

yv = -\frac{14400-16000}{-40}

yv = 40;

Raiz de 40 é 2\sqrt{10} . Alternativa b)
PeterHiggs
Usuário Ativo
Usuário Ativo
 
Mensagens: 22
Registrado em: Sex Mai 25, 2012 18:21
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)