• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Quarto ponto coordenado] de um paralelogramo

[Quarto ponto coordenado] de um paralelogramo

Mensagempor Matheus Lacombe O » Sáb Mai 26, 2012 12:01

Quarto ponto coordenado de um paralelogramo

- Olá pessoal! Novamente venho recorrer a vocês a fim de sanar minhas dúvidas - agora, sobre geometria anaítica. Bem, estou resolvendo minha antiga apostila do ensino médio sobre Analítica e heis que deparo-me com um problema que parece sem solução.

- O anunciado apresenta uma situação em que dentro de um plano cartesiano possúo apenas três pontos conhecidos de um paralelogramo, devo então encontrar o quarto ponto desta figura. O enunciado também faz a seguinte observação: "As diagonais de um paralelogramo 'encontram-se' em seus respectivos pontos médios".

Pontos do plano: A(0,1), B(2,5), C(3,4) e por dedução, D(X,Y).

Imagem

Tentativas:

- Tentei usar a definição do paralelogramo - "Um paralelogramo é um polígono de quatro lados (quadrilátero) cujos lados opostos são 'iguais' e 'paralelos'." - para lidar com eqüidistâncias comparando a distância BC com a distância DA, porem de nada adianta porque o resultado em um é inteiro e em outro são duas equações de segundo grau - uma para 'x' e outra para 'y'. Eu precisaria de dois pontos que eqüdistam do ponto 'P' para lidar com a eqüdistância, que foi a unica solução que me veio a cabeça até o momento, porém não existem dois pontos equidistantes de 'P' neste problema. Então fiquei travado nesta.

PS: Pela definição de paralelogramo eu - visualmente - sei que, provavelmente, o ponto 'D' trata-se na verdade de D(1,0) para que BC fique paralelo a AD. Porém não consigo chegar a isto.
Editado pela última vez por Matheus Lacombe O em Dom Mai 27, 2012 18:54, em um total de 2 vezes.
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: Quarto ponto coordenado de um paralelogramo

Mensagempor Matheus Lacombe O » Sáb Mai 26, 2012 20:09

Umm? Nem uma dica?
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: Quarto ponto coordenado de um paralelogramo

Mensagempor Matheus Lacombe O » Dom Mai 27, 2012 16:10

Ai meu Deus do céu. Quero me matar, dois dias pra resolver uma mer** desta. Que bloqueio mental ferrado, putz!

Finalmente entendi o que o autor queria dizer quando afirmava que: "As diagonais do paralalogramo se encontram em seus respectivos pontos médios."

O que eu fiz foi o seguinte:

- Primeiramente descobri o ponto médio entre 'A' e 'C'. Como este ponto médio - segundo o enunciado - é o mesmo ponto médio entre 'B' e 'D' então usei ele na média aritimética e descobri o 'X' e o 'Y' do ponto 'D'.

Resolução:

- Descobrindo o ponto médio entre 'B' e 'D'.

Pm(A,C)= \left( \frac{0+3}{2},\frac{1+4}{2} \right)

Pm(A,C)= \left( \frac{3}{2},\frac{5}{2} \right)

Imagem

- Descobrindo a abcissa do ponto 'D' pela média aritimética das abcissas de 'B' e de 'D'.

\frac{2+x}{2} = \frac{3}{2}

2 + x = 3

x = 1

- Descobrindo a ordenada do ponto 'D' pela média aritimética das ordenadas de 'B' e de 'D'.

\frac{5+y}{2} = \frac{5}{2}

5 + y = 5

y = 0

PS: Acho que é isso. Espero não ter falado besteira.
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)