por Danilo » Qui Mai 24, 2012 05:11
Pessoal, estou com dificuldades para entender o enunciado... segue o exercício!
Entre os triângulos OAB com o vértice O na origem e os outros dois vértices A e B, respectivamente, nas retas y =1 e y =3 e alinhados com o ponto P(7,0), determine aquele para o qual é mínima a soma dos quadrados dos lados.
Mas por que ''os triângulos OAB''? ''determine aquele (seria aquele triangulo para o qual é mínima a soma dos quadrados dos lados?)
Quem puder me explicar e me dar idéia sobre qual caminho seguir eu agradeço!
Editado pela última vez por
Danilo em Sex Mai 25, 2012 03:30, em um total de 1 vez.
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Danilo » Qui Mai 24, 2012 05:30
Bom, para tentar resolver, inicialmente, eu fiz o gráfico com o ponto (7,0), tracei respectivamente as retas que passam pelos pontos (0,1), (0,3), tracei também a reta que passa pelos pontos (0,1), (0,3), (7,0). Depois tracei um segmento que vai da origem até as retas... mas não consegui visualizar triângulo algum... . To meio confuso, quem puder dar uma luz aí.. agradeço!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sex Mai 25, 2012 11:32
Danilo escreveu:Pessoal, estou com dificuldades para entender o enunciado... segue o exercício!
Entre os triângulos OAB com o vértice O na origem e os outros dois vértices A e B, respectivamente, nas retas y =1 e y =3 e alinhados com o ponto P(7,0), determine aquele para o qual é mínima a soma dos quadrados dos lados.
Mas por que ''os triângulos OAB''? ''determine aquele (seria aquele triangulo para o qual é mínima a soma dos quadrados dos lados?)
Quem puder me explicar e me dar idéia sobre qual caminho seguir eu agradeço!
Danilo escreveu:Bom, para tentar resolver, inicialmente, eu fiz o gráfico com o ponto (7,0), tracei respectivamente as retas que passam pelos pontos (0,1), (0,3), tracei também a reta que passa pelos pontos (0,1), (0,3), (7,0). Depois tracei um segmento que vai da origem até as retas... mas não consegui visualizar triângulo algum... . To meio confuso, quem puder dar uma luz aí.. agradeço!
As figuras abaixo ilustram três exemplos para o triângulo OAB. Mas note que há infinitos exemplos. Basta "deslizar" o ponto A sobre a reta y = 1 que teremos um outro ponto B correspondente na reta y = 3 (e de tal modo que A, B e P estão alinhados).

- figura1.png (4.39 KiB) Exibido 3914 vezes

- figura2.png (4.25 KiB) Exibido 3914 vezes

- figura3.png (5.21 KiB) Exibido 3914 vezes
De todos os infinitos triângulos OAB que podemos formar, deseja-se aquele que tem a seguinte soma como a menor possível:

Agora tente concluir o execício. Se você não conseguir, então poste aqui até onde você conseguiu avançar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Sáb Mai 26, 2012 15:12
Bom, tentei fazer assim:
Chamei o ponto B (b,3), o ponto A (a, 1). Como B, A e P estão alinhados, peguei os 3 pontos, montei o determinante e igualei a zero. Coloquei b em função de a e vi que b = 3a - 14. Aí, fazendo a distância entre os pontos OB, OA E BA e elevando tudo ao quadrado, logo vou obter o quadrado dos lados + a distância. Aí, cheguei no polinomio de segundo grau 14a² - 140a + 406 e não consegui terminar. Está correto o racionio? Tem maneiras mais simples de resolver? Valeu!
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sáb Mai 26, 2012 18:48
Danilo escreveu:Chamei o ponto B (b,3), o ponto A (a, 1). Como B, A e P estão alinhados, peguei os 3 pontos, montei o determinante e igualei a zero. Coloquei b em função de a e vi que b = 3a - 14. Aí, fazendo a distância entre os pontos OB, OA E BA e elevando tudo ao quadrado, logo vou obter o quadrado dos lados + a distância. Aí, cheguei no polinomio de segundo grau 14a² - 140a + 406 e não consegui terminar. Está correto o racionio?
Esse é o raciocínio esperado para o exercício.
Note que no final você obteve uma função como:

Se você fizesse o gráfico dessa função, então teria uma parábola com concavidade para cima. Sendo assim, o vértice dessa parábola é o ponto de mínimo dessa função. A coordenada x desse vértice será dada por:

Temos então que para a = 5 a soma será a menor possível.
Lembrando agora que b = 3a - 14, temos que b = 1.
Portanto, os pontos são A = (5, 1) e B = (1, 3).
Danilo escreveu:Tem maneiras mais simples de resolver?
Eu acredito que essa já é a maneira mais simples.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Sáb Mai 26, 2012 18:59
A é mesmo... pela enésima vez, muito obrigado !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Exercício sobre equação da reta - Dúvida
por Danilo » Seg Mai 07, 2012 00:28
- 2 Respostas
- 1935 Exibições
- Última mensagem por Danilo

Dom Mai 13, 2012 22:38
Geometria Analítica
-
- Dúvida em exercício sobre equação da reta
por Danilo » Dom Mai 13, 2012 22:05
- 6 Respostas
- 3382 Exibições
- Última mensagem por Danilo

Qua Mai 16, 2012 01:19
Geometria Analítica
-
- Duvida em exercício {equação da reta/perpendicularismo}
por Danilo » Qui Jun 14, 2012 06:15
- 2 Respostas
- 1833 Exibições
- Última mensagem por Danilo

Sáb Jun 16, 2012 03:22
Geometria Analítica
-
- interseção,área e reta dúvida exercício
por igor44 » Seg Out 31, 2011 21:20
- 1 Respostas
- 2122 Exibições
- Última mensagem por procyon

Ter Nov 01, 2011 00:57
Geometria Analítica
-
- [Ângulo - reta e plano] Dúvida exercício
por MrJuniorFerr » Sex Out 12, 2012 11:51
- 6 Respostas
- 4602 Exibições
- Última mensagem por MarceloFantini

Sex Out 12, 2012 20:18
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.