por Claudin » Dom Mai 20, 2012 16:46
Determine os semi-eixos, os focos, a excentricidade e as diretrizes da elipse

Não consigo resolver
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 17:16
Claudin escreveu:Determine os semi-eixos, os focos, a excentricidade e as diretrizes da elipse

Não consigo resolver

dividindo por 2;


Claudin,
talvez sua dúvida seja essa. A propósito, como está tentando resolver?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 18:01
Pelo que eu vi aqui eu errei conta, agora como faço pra achar os semi eixos?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 18:19
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 18:53


, então o eixo maior está no eixo x, certo?!

====>
![a = \sqrt[]{\frac{2}{3}} a = \sqrt[]{\frac{2}{3}}](/latexrender/pictures/8011207d39a509f9387c8bbb0a91b624.png)
====>
![a = \frac{\sqrt[]{2}}{\sqrt[]{3}} a = \frac{\sqrt[]{2}}{\sqrt[]{3}}](/latexrender/pictures/ca93003aa970a5b13865d91d3c5a70d2.png)
====>
![a = \frac{\sqrt[]{6}}{3} a = \frac{\sqrt[]{6}}{3}](/latexrender/pictures/bd70a4a47e55e476fa5664df0daaa747.png)
e
![a = - \frac{\sqrt[]{6}}{3} a = - \frac{\sqrt[]{6}}{3}](/latexrender/pictures/eba0eb62b71025dff9906d912abf7919.png)
Como o centro é na origem:
![(- \frac{\sqrt[]{6}}{3},0) (- \frac{\sqrt[]{6}}{3},0)](/latexrender/pictures/84544aa13097f7fed89732bb04154f5d.png)
e
![(\frac{\sqrt[]{6}}{3},0) (\frac{\sqrt[]{6}}{3},0)](/latexrender/pictures/b4a8b0ca48d19b5e9e97357225b21741.png)
2a =
![\frac{2\sqrt[]{6}}{3} \frac{2\sqrt[]{6}}{3}](/latexrender/pictures/9a472bbe52e8a9248536e36e40b71a3d.png)
===================> Eixo maior
Tente agora o eixo menor
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 19:36
No gabarito que tenho aqui, o resultado correto seria os focos que eu postei primeiramente
poderia conferir pra ver qual estaria correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 19:38
Desculpe, eu n tinha postado, mas agora ta aqui embaixo, verifique e veja qual esta correto o meu ou o seu? Pois o gabarito pode estar errado tbm ne.
![(\frac{\sqrt[]{6}}{6},0) (\frac{\sqrt[]{6}}{6},0)](/latexrender/pictures/c8d55b8ea1942c08eccc59242ffffff4.png)
![(-\frac{\sqrt[]{6}}{6},0) (-\frac{\sqrt[]{6}}{6},0)](/latexrender/pictures/3ee9f571cb48063b7bc382409a2b0446.png)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 19:50
Calculando c a partir de:

obtive que
![\frac{\sqrt[]{6}}{2} \frac{\sqrt[]{6}}{2}](/latexrender/pictures/0d9999d9fca0eb82da522e64aa8b7610.png)
Portanto os meus focos irao mudar novamente, e não encontrei a resposta exata até agora.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 19:51
Claudin,
conferi minhas contas e não achei erro! Se estou errando, não sei em qual passagem!!
Até logo.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 19:57
Mas os valores dos seus Focos, qual seria?
Pois os valores deveriam ser empregados da seguinte maneira


Correto?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Dom Mai 20, 2012 19:58
E gostaria de saber como calcula os semi-eixos também, que não consegui.
obrigado

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 20:02
Claudin escreveu:Calculando c a partir de:

obtive que
![\frac{\sqrt[]{6}}{2} \frac{\sqrt[]{6}}{2}](/latexrender/pictures/0d9999d9fca0eb82da522e64aa8b7610.png)
Portanto os meus focos irao mudar novamente, e não encontrei a resposta exata até agora.



====>

====>

====>
![c = \frac{\sqrt[]{6}}{6} c = \frac{\sqrt[]{6}}{6}](/latexrender/pictures/a5564b0847a52d3c80953debaf4fd8dc.png)
e
![2c = \frac{\sqrt[]{6}}{3} 2c = \frac{\sqrt[]{6}}{3}](/latexrender/pictures/978837582acc95bd2c37e641b13d6a19.png)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 20:10
obrigado
e os semi-eixos?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DanielFerreira » Dom Mai 20, 2012 20:11
Eixo Maior:
![(- \frac{\sqrt[]{6}}{3}, 0) (- \frac{\sqrt[]{6}}{3}, 0)](/latexrender/pictures/b710fc0c767d3ba548fddf890543a221.png)
e
![(\frac{\sqrt[]{6}}{3}, 0) (\frac{\sqrt[]{6}}{3}, 0)](/latexrender/pictures/a42eea1cb1839396cc39143a46f1fe72.png)
Eixo Menor:
![(0, - \frac{\sqrt[]{2}}{2}) (0, - \frac{\sqrt[]{2}}{2})](/latexrender/pictures/e40e11e54da8a53acf637a1d51cd0132.png)
e
![(0, \frac{\sqrt[]{2}}{2}) (0, \frac{\sqrt[]{2}}{2})](/latexrender/pictures/f58e29881d64cf57ffa0294a34b502e1.png)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Claudin » Dom Mai 20, 2012 20:40
Obrigado

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Elipse
por carmem » Seg Jun 01, 2009 16:21
- 3 Respostas
- 3539 Exibições
- Última mensagem por Cleyson007

Sex Jun 05, 2009 12:54
Geometria Analítica
-
- Elipse
por lucas1365 » Sex Jul 03, 2009 21:30
- 0 Respostas
- 1722 Exibições
- Última mensagem por lucas1365

Sex Jul 03, 2009 21:30
Geometria Analítica
-
- Elipse
por Siax » Sex Jul 10, 2009 00:03
- 0 Respostas
- 1703 Exibições
- Última mensagem por Siax

Sex Jul 10, 2009 00:03
Geometria Analítica
-
- Elipse
por Claudin » Dom Mai 20, 2012 18:50
- 2 Respostas
- 1501 Exibições
- Última mensagem por Claudin

Qui Mai 24, 2012 02:55
Geometria Analítica
-
- Elipse
por Claudin » Dom Mai 20, 2012 20:07
- 2 Respostas
- 1336 Exibições
- Última mensagem por Claudin

Ter Jun 12, 2012 20:29
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.