• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cônicas

Cônicas

Mensagempor Claudin » Dom Mai 13, 2012 14:35

Determine a equação da elipse com centro na origem, eixo maior horizontal e contendo os pontos (3,1) e (4,0).
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor DanielFerreira » Sáb Mai 19, 2012 11:56

Claudin escreveu:Determine a equação da elipse com centro na origem, eixo maior horizontal e contendo os pontos (3,1) e (4,0).

Fiz assim:
Como o eixo maior é horizontal, então (4,0) coincide com ele; portanto, a = 4.

A equação é dada por \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.

A fim de encontrar o valor de 'b', substituímos (3,1) na equação:

\frac{9}{16} + \frac{1}{b^2} = 1 ===========> b^2 = \frac{16}{7}

Segue que
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 =====> \frac{x^2}{16} + \frac{y^2}{\frac{16}{7}} = 1 =======> \frac{x^2}{16} + \frac{7y^2}{16} = 1
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 15:28

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 16:01

Tenho uma duvida

Não sei fazer o esboço o que devo analisar para fazer o esboço da elipse corretamente?

por exemplo joguei no programa e a elipse acima é esta, como chegar nesse desenho, o que devo analisar?

http://www4b.wolframalpha.com/Calculate ... ngeControl
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor DanielFerreira » Dom Mai 20, 2012 16:50

Não aparece nehuma figura no link.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 16:54

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor DanielFerreira » Dom Mai 20, 2012 17:02

Inicialmente,
a equação deverá está na forma \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1

Depois, marque no gráfico o Eixo maior e o Eixo menor.

\frac{x^2}{16} + \frac{y^2}{\frac{16}{7}} = 1

a² = 16
a = 4
a = - 4

Eixo maior

b² = 16/7
(...)
Eixo menor
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 17:34

Obrigado

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.