• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cônicas

Cônicas

Mensagempor Claudin » Dom Mai 13, 2012 14:35

Determine a equação da elipse com centro na origem, eixo maior horizontal e contendo os pontos (3,1) e (4,0).
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor DanielFerreira » Sáb Mai 19, 2012 11:56

Claudin escreveu:Determine a equação da elipse com centro na origem, eixo maior horizontal e contendo os pontos (3,1) e (4,0).

Fiz assim:
Como o eixo maior é horizontal, então (4,0) coincide com ele; portanto, a = 4.

A equação é dada por \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.

A fim de encontrar o valor de 'b', substituímos (3,1) na equação:

\frac{9}{16} + \frac{1}{b^2} = 1 ===========> b^2 = \frac{16}{7}

Segue que
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 =====> \frac{x^2}{16} + \frac{y^2}{\frac{16}{7}} = 1 =======> \frac{x^2}{16} + \frac{7y^2}{16} = 1
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 15:28

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 16:01

Tenho uma duvida

Não sei fazer o esboço o que devo analisar para fazer o esboço da elipse corretamente?

por exemplo joguei no programa e a elipse acima é esta, como chegar nesse desenho, o que devo analisar?

http://www4b.wolframalpha.com/Calculate ... ngeControl
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor DanielFerreira » Dom Mai 20, 2012 16:50

Não aparece nehuma figura no link.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 16:54

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Cônicas

Mensagempor DanielFerreira » Dom Mai 20, 2012 17:02

Inicialmente,
a equação deverá está na forma \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1

Depois, marque no gráfico o Eixo maior e o Eixo menor.

\frac{x^2}{16} + \frac{y^2}{\frac{16}{7}} = 1

a² = 16
a = 4
a = - 4

Eixo maior

b² = 16/7
(...)
Eixo menor
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Cônicas

Mensagempor Claudin » Dom Mai 20, 2012 17:34

Obrigado

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.