por Priscilla Correa » Sex Mai 18, 2012 17:53
Olá, estou com uma dúvida num exercício que o seguinte...é pra desenhar o gráfico de uma função, o professor dá tudo que precisa
é só desenhar....mas aí ela dá a assíntota inclinada, que vai ser: limite tendendo a mais infinito[g(x)-(x-1)=0 . Pelo que eu entendi
a assíntota vai ser x-1, aí eu tenho que traçar essa reta...só que é traçado a reta de x. Não sei se deu pra entender, mas se alguém
puder me dá uma ajudinha....
-
Priscilla Correa
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Abr 07, 2012 08:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ENGENHARIA
- Andamento: cursando
por LuizAquino » Sáb Mai 19, 2012 16:30
Priscilla Correa escreveu:Olá, estou com uma dúvida num exercício que o seguinte... é pra desenhar o gráfico de uma função, o professor dá tudo que precisa
é só desenhar... mas aí ela dá a assíntota inclinada, que vai ser: limite tendendo a mais infinito[g(x)-(x-1)=0 . Pelo que eu entendi
a assíntota vai ser x-1, aí eu tenho que traçar essa reta...só que é traçado a reta de x. Não sei se deu pra entender, mas se alguém
puder me dá uma ajudinha....
Se temos
![\lim_{x\to+\infty} [g(x) - (x - 1)] = 0 \lim_{x\to+\infty} [g(x) - (x - 1)] = 0](/latexrender/pictures/20a031872d685f64b93e9756a52a1d1d.png)
, então a reta y = x - 1 é uma assíntota oblíqua ("inclinada") para o gráfico de
g quando

.
Desse modo, no esboço do gráfico de
g, você deve desenhar a reta y = x - 1 (e não y = x) como assíntota oblíqua quando

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Priscilla Correa » Sáb Mai 19, 2012 20:20
Obrigada pela resposta. O professor foi corrigir o exercício, ele tinha errado.
Obrigada
-
Priscilla Correa
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Sáb Abr 07, 2012 08:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ENGENHARIA
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- assintota
por DyegoBrum » Seg Set 19, 2011 13:30
- 2 Respostas
- 2034 Exibições
- Última mensagem por DyegoBrum

Qua Set 21, 2011 15:09
Cálculo: Limites, Derivadas e Integrais
-
- limite {assintota}
por DyegoBrum » Seg Set 19, 2011 13:38
- 1 Respostas
- 1674 Exibições
- Última mensagem por LuizAquino

Seg Set 19, 2011 17:27
Cálculo: Limites, Derivadas e Integrais
-
- [Assíntota] - Derivadas
por natanaelskt » Ter Jul 22, 2014 18:40
- 0 Respostas
- 815 Exibições
- Última mensagem por natanaelskt

Ter Jul 22, 2014 18:40
Cálculo: Limites, Derivadas e Integrais
-
- ASSINTOTA HORIZONTAL
por iksin » Qua Abr 17, 2019 00:03
- 1 Respostas
- 5970 Exibições
- Última mensagem por Baltuilhe

Qua Mai 01, 2019 17:23
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] assintota vertical
por beel » Seg Set 05, 2011 12:58
- 2 Respostas
- 3458 Exibições
- Última mensagem por Jhonata

Dom Mai 27, 2012 00:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.