• Anúncio Global
    Respostas
    Exibições
    Última mensagem

assíntota inclinada

assíntota inclinada

Mensagempor Priscilla Correa » Sex Mai 18, 2012 17:53

Olá, estou com uma dúvida num exercício que o seguinte...é pra desenhar o gráfico de uma função, o professor dá tudo que precisa
é só desenhar....mas aí ela dá a assíntota inclinada, que vai ser: limite tendendo a mais infinito[g(x)-(x-1)=0 . Pelo que eu entendi
a assíntota vai ser x-1, aí eu tenho que traçar essa reta...só que é traçado a reta de x. Não sei se deu pra entender, mas se alguém
puder me dá uma ajudinha....
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando

Re: assíntota inclinada

Mensagempor LuizAquino » Sáb Mai 19, 2012 16:30

Priscilla Correa escreveu:Olá, estou com uma dúvida num exercício que o seguinte... é pra desenhar o gráfico de uma função, o professor dá tudo que precisa
é só desenhar... mas aí ela dá a assíntota inclinada, que vai ser: limite tendendo a mais infinito[g(x)-(x-1)=0 . Pelo que eu entendi
a assíntota vai ser x-1, aí eu tenho que traçar essa reta...só que é traçado a reta de x. Não sei se deu pra entender, mas se alguém
puder me dá uma ajudinha....


Se temos \lim_{x\to+\infty} [g(x) - (x - 1)] = 0 , então a reta y = x - 1 é uma assíntota oblíqua ("inclinada") para o gráfico de g quando x\to+\infty .

Desse modo, no esboço do gráfico de g, você deve desenhar a reta y = x - 1 (e não y = x) como assíntota oblíqua quando x\to +\infty .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: assíntota inclinada

Mensagempor Priscilla Correa » Sáb Mai 19, 2012 20:20

Obrigada pela resposta. O professor foi corrigir o exercício, ele tinha errado.

Obrigada
Priscilla Correa
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Abr 07, 2012 08:58
Formação Escolar: GRADUAÇÃO
Área/Curso: ENGENHARIA
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}