• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Radiciação

Radiciação

Mensagempor TAE » Qua Mai 16, 2012 18:03

Olá pessoal, como continuo a desenvolver:
a)\frac{1}{\sqrt[]{2}} + \frac{\sqrt[]{5}}{\sqrt[]{10}} =\frac{1*\sqrt[]{2}}{(\sqrt[]{2}*)(\sqrt[]{2})}}+\frac{(\sqrt[]{5})*(\sqrt[]{10})}{(\sqrt[]{10})*(\sqrt[]{10})} = \frac{\sqrt[]{2}}{(\sqrt[]{2}){}^{2}}+\frac{\sqrt[]{50}}{\sqrt[]{100}}= \frac{\sqrt[]{2}}{2}+\frac{\sqrt[]{50}}{10}=\frac{\sqrt[]{2}}{2}+\frac{5\sqrt[]{2}}{10}
Resultado:
\sqrt[]{2}

b)\frac{3}{2-\sqrt[]{2}}-\frac{1}{\sqrt[]2+1}}=\frac{3*(2+\sqrt[]{2})}{(2-\sqrt[]{2})(2+\sqrt[]{2})}-\frac{1(\sqrt[]{2}-1)}{(\sqrt[]{2}+1)(\sqrt[]{2}-1)} = \frac{6+3\sqrt[]{2}}{4-\sqrt[]{2}}-\frac{\sqrt[]{2}-1}{\sqrt[]{2-1}}=
Resultado:
\frac{8+\sqrt[]{2}}{2}
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Radiciação

Mensagempor DanielFerreira » Qua Mai 16, 2012 23:22

TAE,
boa noite!
a)
Até onde fez está correto, mas poderia ter aplicado o MMC antes, veja:
\frac{1}{\sqrt[]{2}} + \frac{\sqrt[]{5}}{\sqrt[]{10}} =


\frac{1}{\sqrt[]{2}} + \frac{\sqrt[]{5}}{\sqrt[]{2}.\sqrt[]{5}} =


\frac{1.\sqrt[]{5} + \sqrt[]{5}}{\sqrt[]{2}.\sqrt[]{5}} =


\frac{2.\sqrt[]{5}}{\sqrt[]{2}.\sqrt[]{5}} =


\frac{2}{\sqrt[]{2}} =

racionalizando...

\frac{2}{\sqrt[]{2}}.\frac{\sqrt[]{2}}{\sqrt[]{2}} =


\frac{2\sqrt[]{2}}{2} =


\sqrt[]{2}


Tente resolver a b), senão conseguir retorne.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Radiciação

Mensagempor TAE » Qui Mai 17, 2012 16:16

Bem lembrado, tinha me esquecido do mmc, :lol: terminei a a) assim:
\frac{\sqrt[]{2}}{2}+\frac{\sqrt[]{2}}{2}=\frac{\sqrt[]{2}+\sqrt[]{2}}{2}=\frac{2\sqrt[]{2}}{2}=\sqrt[]{2}

vou fazer a b)...

Valeu!
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Radiciação

Mensagempor TAE » Qui Mai 17, 2012 16:50

A b), continuando:

\frac{6+3\sqrt[]{2}}{4-\sqrt[]{2{}^{2}}}-\frac{\sqrt[]{2}-1}{\sqrt[]{2^2}-1}=\frac{6-3\sqrt[]{2}}{4-2}-\frac{\sqrt[]{2}-1}{2-1}=\frac{6-3\sqrt[]{2}}{2}-\frac{\sqrt[]{2}-1}{1}=*mmc=\frac{6-3\sqrt[]{2}-2\sqrt[]{2}-2}{2}=\frac{4-5\sqrt[]{2}}{2}

Tem algo errado com os sinais
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Radiciação

Mensagempor DanielFerreira » Sáb Mai 19, 2012 07:29

Até aqui está certo:

\frac{3}{2 - \sqrt[]{2}} - \frac{1}{\sqrt[]{2} + 1} =\frac{3(2 + \sqrt[]{2})}{(2 - \sqrt[]{2})(2 + \sqrt[]{2})} - \frac{1(\sqrt[]{2} - 1)}{(\sqrt[]{2} + 1)(\sqrt[]{2} - 1)} =


Vc cometeu um erro no denominador, o correto seria:

\frac{6 + 3\sqrt[]{2}}{4 - 2} - \frac{\sqrt[]{2} - 1}{2 - 1} = \frac{6 + 3\sqrt[]{2}}{2} - \frac{\sqrt[]{2} - 1}{1} = (...)

Agora basta terminar.

Espero ter ajudado!!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Radiciação

Mensagempor TAE » Sáb Mai 19, 2012 11:23

Por que não está dando 8, hein...
\frac{6+3\sqrt[]{2}}{2}-\frac{\sqrt[]{2}-1}{1}=*mmc=\frac{6+3\sqrt[]{2}-2\sqrt[]{2}-2}{2}=\frac{4+\sqrt[]{2}}{2}
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Radiciação

Mensagempor DanielFerreira » Sáb Mai 19, 2012 11:29

TAE,
cuidado com os sinais, eles podem ser fatais. Rsrsrsr

Note que na 2ª fração temos um sinal de negativo, ele troca todos os outros sinais do numerador, inclusive o do (- 1).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Radiciação

Mensagempor TAE » Seg Mai 21, 2012 16:42

Essa era minha dúvida dan, se quando você calcula o mmc troca o sinal de todos ou só do primeiro nº da fração, valeu, sempre aprendendo:

*mmc=\frac{6+3\sqrt[]{2}-2\sqrt[]{2}+2}{2}=\frac{8+\sqrt[]{2}}{2}

*Arrumei
:coffee:
Editado pela última vez por TAE em Ter Mai 22, 2012 23:20, em um total de 2 vezes.
“O tolo, quando erra,queixa-se dos outros; o sábio queixa-se de si mesmo.” (Sócrates, 469-399, AC).
TAE
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Ter Mar 20, 2012 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: TÉC. ELETRÔNICA
Andamento: formado

Re: Radiciação

Mensagempor DanielFerreira » Ter Mai 22, 2012 23:00

TAE escreveu:Essa era minha dúvida dan, se quando você calcula o mmc troca o sinal de todos ou só do primeiro nº da fração, valeu, sempre aprendendo:

*mmc=\frac{6-3\sqrt[]{2}-2\sqrt[]{2}+2}{2}=\frac{8+\sqrt[]{2}}{2}

:coffee:

Note que o sinal de 3\sqrt[]{2} é positivo, e não negativo.
Se foi um erro de digitação desconsidere este post.

Obs.: Quanto a sua dúvida ('ex'), o sinal de menos é da fração, ou seja, todos os termos do numerador; e, não apenas do \sqrt{2}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D